如图,M是平行四边形ABCD的边AB的中点,CM和BD相交于点E,连接DM

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:10:13
如图,M是平行四边形ABCD的边AB的中点,CM和BD相交于点E,连接DM
如图,在平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,求平行四边形ABCD的面积

∵平行四边形ABCD,∴△BOM∽△AOD,∴BM/AD=OB/OD=OM/OA=12,∴OM=3,OB=4,OA=6,BM=12AD=5,∴可得△BOM是直角三角形,即BD⊥AM,∴S△ABD=1/

如图,在平行四边形ABCD中,M,N分别是AB,CD的中点,E,F是AC上两点,且AE=CF,求证MFNE是平行四边形

在平行四边形ABCD中CD=AB,CD∥AB∵M,N分别是AB,CD的中点∴CN=AM∵CD∥AB∴∠NCE=∠MAF∵AE=CF∴AE+EF=CF+EF即AF=CE∴⊿AMF≌⊿CNE﹙SAS﹚∴M

如图,M、N分别是平行四边形ABCD两边上的中点,三角形AMN的面积是7.2平方厘米,平行四边形ABCD的面积是____

根据分析,设总面积为“1”,7.2÷(12−18)=7.2÷38=7.2×83=19.2(平方厘米);答:它的面积是19.2平方厘米.故答案为:19.2.

如图,M是平行四边形ABCD的边AB的中点,CM与BD相交于点E,求

(1),因为三角形CDE相似于三角形BME且CD:BM=2:1所以S△CDE:S△BME=(2:1)^2=4:1因为两个三角形相似且对应边之比为2:1,故两三角形高之比为2:1(过E点做CD和BM的垂

如图,M是平行四边形ABCD的边AB的中点,CM与BD相交于点E,求:△BME的面积:平行四边形ABCD的面积

虽然没图我自己画了一个以AB为下底的平行四边形过E做EF垂直于AB于F,反向延长交CD与P,由AB‖CD不难发现△EMB∽△ECD而且MB:CD=1:2即△EMB与△ECD的相似比为1:2则他们的高之

如图,M是平行四边形ABCD的边AB的中点,CM与BD相交于点E,求:S△BME/S平行四边形ABCD

∵⊿BEM∽⊿CDM(两角对应相等,两三角形相似)∴BM:CM=BE:CD=1:2S⊿BOD:S⊿COD=1:2S⊿COD=2S⊿BCD/3S⊿BCD=S平行四边形ABCD/2S⊿COD=S平行四边形

如图,M是平行四边形ABCD的边AB的中点,CM与BD相交于点E,求:三角形BME与平行四边形ABCD.

∵⊿BEM∽⊿CDM(AA)∴BM:CM=BE:CD=1:2S⊿BOD:S⊿COD=1:2S⊿COD=2S⊿BCD/3S⊿BCD=S平行四边形ABCD/2S⊿COD=S平行四边形ABCD/3S⊿BEM

如图,M为平行四边形ABCD边AD的中点,且MB=MC,求证:四边形ABCD是矩形,

∵MB=MC(已知)M是AD中点∴AM=MD又∵四边形ABCD是平行四边形(已知)∴AB=DC(平行四边形对边相等)∴△AMB≡△DMC(SSS)∵∠BCD=∠DCM+∠MCB∠WBC=∠WBM+∠M

如图,已知点P是平行四边形ABCD所在平面外一点,M.N分别是AB.PC的中点

如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证:MN//平面PAD;(2)若MN=PC=4,PA=4根号下3,求异面直线PA与MN所成的角的大小.(1)取PD的

如图M是平行四边形ABCD边AD的中点,且MB=MC,求证:这个平行四边形是矩形

因为四边形ABCD是平行四边形,所以∠AMB=∠MBC,∠DMC=∠BCM又因为MB=MC,所以∠MBC=∠BCM.所以∠AMB=∠DMCM是AD的中点,所以AM=DM因此△AMB≌△DMC,所以∠A

如图,M是平行四边形ABCD的边AB的中点,CM与BD交于点E,求S△BME:S平行四边形ABCD

点M为AB的中点,则BM=AB/2=DC/2.∵BM∥CD.∴ME/CE=BM/DC=(DC/2)/DC=1/2,则ME/MC=1/3,故S⊿BME=(1/3)S⊿BMC.(同高的三角形面积比等于底之

如图;已知AC是平行四边形ABCD的一条对角线,

先证明三角形ADN与三角形CBM全等得到DN=BM又有BM⊥AC,DN⊥AC所以DN//BMDN与BM平行且相等,所以是平行四边形

如图,在平行四边形ABCD中,M,N分别是OA,OC的中点,O为对角线AC与BD的交点,求证:四边形BMDN是平行四边形

在△BON与△MOD中,ON=OM;BO=OD,角BON=MOD(对顶角相等),所以△BON与△MOD全等,则角NBO=MDO,所以BN//MD,同理证明:在△BOM与△NOD全等,BM//ND,所以

如图,在平行四边形ABCD中,M,N分别是OA,OC的中点,O为对角线AC与BD的交点,求证四边形BMDN是平行四边形

证明∵平行四边形ABCD∴BO=ODAO=OC∵MN为AO、OC中点、∴MO=NO(加上前面的BO=OD)就可得对角线互相平分∴四边形BMDN是平行四边形

如图,M是平行四边形ABCD的边AD的中点,且MB=MC.求证:平行四边形ABCD是矩形

思路是证明平行四边形中有一个内角为90°,要证明有一个内角为90°,就要证明△ABM≌△DCM下面就来证明:因为四边形ABCD是平行四边形所以AB=CD又M是AD中点所以AM=DM又因为MB=MC所以

如图,已知ABCD和ACEF是平行四边形,M是线段EF的中点.求证AM‖平面BDE

连BD交AC于O,连EO,则EO∈平面BDE在平行四边形ACEF内证明AM∥EO就这么简单,自己做完

如图,在平行四边形ABCD中,M,N分别是AD,BC的中点,四边形MENF是平行四边形吗?证明你的结论.

证明先证明AN//MC因为AM平行且等于NC即ANCM是平行四边形即AN//MC即EN//MF.(1)同理可证BM//DN即EM//AF.(2)由(1)(2)知四边形MENF是平行四边形再问:怎么证明

如图,在平行四边形ABCD中,M,N分别是AD,BC的中点,四边形MENF是平行四边形吗?证明你的结论

四边形MENF是平行四边形证明:(提示)AM∥CN、AM=CN∴四边形ANCM是平行四边形∴AN∥CM同样道理BM∥DN根据两组对边分别平行的四边形是平行四边形可得四边形MENF是平行四边形

如图,在平行四边形ABCD中,ac是对角线,则平行四边形ABCD的面积是_____

设DC中点为O∵ABCD是平行四边形∴AO=OC,BO=DO,AD=BC∵BO=1.5,BC=4∴BD=3,AD=4∵AB=5根据勾股定理逆定理可得∠ADB=90°∴S平行四边形ABCD=AD*BD=