如图,OA,OB是圆O的两条半径,且OA⊥OB,C,D是弧AB的三等分点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:16:53
证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°
1.连接OD∵AO垂直于OB∴∠AOB=90°∵D为圆O的切点,且OD为半径∴∠0DC=90°∵A0=0D∴∠0AE=∠ODE又∵∠A0B=∠0DC=90°∴∠0DC-∠0DE=∠A0B-∠0AE=∠
(2)设BC交OM于E,∵BD=4,OA=OB=1/2BD=2,∴PA=3,∴PO=5;∵BC‖MP,OM⊥MP,∴OM⊥BC,∴BE=1/2BC;∵∠BOM+∠MOP=90°,在直角三角形OMP中,
由OA⊥OB,CD⊥OA,CE⊥OB得四边形DCEO是矩形连接OC所以OC=DE因为OC是为径,即7所以DE=7
、连接MB,角PMN=角MBD又角BMD=角NOD=90所以角MBD=角PNM=角PMN所以PM=PN2、连接OM交BC于E因为∠OMP=90,BC‖MP所以OM垂直BC又角BOM=角MPO所以三角形
∵OM=0.5*OA=0.5*OB=ON,CM=CN,OC=OC∴△OMC≌△ONC∴∠AOC=∠BOC∴弧AC=弧BC
1.因为PA为圆O切线所以∠OAP等于90度又因为∠AOP=60°所以∠APO等于30度所以角∠OPB等于30度(这个没什么好说的)2.因为∠APO=∠OPBOP=OP∠COP=∠DOP所以△cop全
是这个么?已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE
三角形OAB为等腰直角三角形,斜边5倍根号2,则圆的半径为5,角AOE=角OBF,则直角三角形AOE全等于OBF,OE=BF,AE=OFCE+AE+BF+DF=CE+OE+OF+DF=CD=圆直径=1
用全等证明证明∵OA,OB是圆O的半径∴OA=OB又∵MN为OAOB中点∴OM=ON(1)∵点C是弧AB的中点∴弧AC=弧BC∴角MOC=角NOC(2)OC=OC(3)(1)(2)(3)得△CMO≌△
答案见图,理由为 在直角三角形中,如果直角边等于斜边的一半,则该直角边所对的角为30°
证明:(1)连接OQ;∵OB=OQ,∴∠B=∠BQO;∵PR=QR,∴∠RPQ=∠PQR∵∠B+∠BPO=90°,∠BPO=∠RPQ=∠PQR,∴∠BQO+∠PQR=90°,即OQ⊥QR,直线QR是⊙
估计缺了条件:连接OC∵CD⊥OA,CE⊥OB∴∠CEO=∠CDO=90又∵CD=CE,OC=OC∴Rt⊿CEO≌Rt⊿CDO(HL)∴∠AOC=∠COB∴弧AC=弧CB【同圆内相等圆心角所对的弧相等
∵CD垂直OA于DCE垂直OB于E∠OEC=∠DOC∵OC=OC,CD=CE∴△EOC和△DOC全等(HL)∴∠AOC=∠BOC∴弧CA=BC(圆心角定义的推论)∴C是弧AB中点.
DC=DP.连接OC.因为CD是圆的切线,所以OC⊥CD,即∠DCP+∠ACO=90°又OA⊥OB,有∠A+∠APO=90°.OA=OC,有∠A=∠OCP,因此∠DCP=∠APO=∠DPC,于是DC=
证明:∵AC=BD,OAOB∴OC=OD∵∠A=∠A∴△OAD≌△OBC∴AD=BC
∵OM=0.5*OA=0.5*OB=ON,CM=CN,OC=OC∴△OMC≌△ONC∴∠AOC=∠BOC∴弧AC=弧BC
过O点做角AOB的角平分线,交两小半圆于d点.不难求证,应为图形是对称的.过D向oa或od的中点画条线,交于c,由角aod为45度和co=cd得三角形cod是一直角等腰三角形.重叠的就是一半圆减俩三角