如图,O是直线AB上一点,OC是角AOB的平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:10:56
如图,O是直线AB上一点,OC是角AOB的平分线
如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,

∠2与∠1是哪个?有图吗?再问:再答:����ocƽ�֡�AOD��AOC��50º���AOD��2��AOC��100º�ߡ�AOB��180º���BOD��180

如图,O是直线AB上一点OC为任意一条射线,OD平分角BOC,OE平分角AOC,

1,角AOD的补角是 角DOB;角BOE的补角是 角EOA;2,角COD与角COE关系是 互余,即角COD+角COE=90度.再问:能否详细点再答:因

1.如图,O为直线AB上一点,作射线OC,OE平分∠AOC,OF平分∠BOC.

第一大题第一小题:设∠COF=2X(两份),∠EOB=5x,∵OF平分∠BOC∴∠FOB=COF=2x∠EOB=5x,∠COE=BOE-COB=5x-4x=x∵OE平分∠AOC∴∠EOA=∠COE=X

如图,O是直线AB上的一点,∠AOC=27°38′,OC平分∠AOD.求∠BOD的度数

已知OE平分角AOC那么角AOE=角COE因为∠AOE+∠ECO+COB=180°又那么∠AOD=15×8=120°所以∠DOB=180减120=60°

如图,O为直线AB上一点,作射线OC,OE平分∠AOC,OF平分∠BOC.

∵∠AOC+∠BOC=180°;OE平分∠AOC,OF平分∠BOC.∴∠COE+∠COF=90°;∵若∠COF:∠EOB=2:5∴∠COE:∠COF=1:2;∴∠COE=30°,∠COF=60°;∴∠

如图,O是直线AB上一点OC为任意一条射线,OD平分角BOC,OE平分角AOC

按你所说的只有上面两种情况,情况1的话,∠BOE肯定是大于90°的,           

如图 点o是直线ab上的一点,过点O作射线OC.

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当

如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.

(1)与∠AOD互补的角∠BOD、∠COD;与∠BOE互补的角∠AOE、∠COE.(2)∠COD+∠COE=12∠AOB=90度.(提示:因为OD平分∠BOC,所以∠COD=12∠BOC).又OE平分

如图①所示,O是直线AB上一点,OC是任一条射线,OD.OE分别是∠AOC和∠BOC的平分线.

因为OD.OE分别是∠AOC和∠BOC的平分线,所以∠AOD=∠COD,∠BOE=∠COE,推出2∠AOD+2∠COE=180度∠AOD+∠COE=90度(1)∠AOD的补角为∠BOD∠BOE的余角为

如图O是直线AB上的一点,OC是一条射线,OE平分角AOC,OF平分角BOC,OE与OF垂直吗,为什么?

垂直证明:∵直线AB∴∠AOC+∠BOC=180°又∵OE平分角AOC,OF平分角BOC∴∠COE=1/2∠AOC;∠COF=1/2∠BOC∴∠COE+∠COF=1/2(∠AOC+∠BOC)=90°即

如图,O为直线AB上一点,OC平分∠AOD,∠AOC=1/3∠BOC.

解∵OC平分∠AOD∴∠AOC=∠COD∵∠AOC=1/3∠BOCOAB为平角180°∴∠AOC=45°∴∠COD=45°∴∠AOD=∠AOC∠COD=45°45°=90°∴DO⊥AB

如图,O为直线AB上一点,∠AOC=3分之一∠BOC,OC是∠AOD的平分线,求∠COD的度数

由题得∠BOC=3∠AOC即∠AOC+3∠AOC=180°解得∠AOC=45°因为OC为∠AOC的角平分线所以∠AOC=∠COD=45°

如图(↓),已知,O为直线AB上一点,OC是任一条射线,OD、OE分别是∠AOC和∠COB的平分线

(1)∵∠AOB为平角,为180°,∠BOC+∠AOC=180°,180°-∠BOC=108°.∴∠COD=108°/2=54°∠EOC:因为OE是∠COD的平分线,∴∠EOC=72°/2=36°.(

如图,O是直线AB上一点,OC平方∠AOB,直线AB的另一侧,以O为顶点作∠DOE=90° (

1)A、O、B为直线上的点,所以∠AOB为平角.∠DOE=90°∠AOE=48°∴∠BOD=180°-90°-48°=42°2)∠COD=∠COB+∠BOD∠AOB=180°,OC平分∠AOB,∴∠C

如图,O为直线AB上的一点,OE平分∠AOD,OC平分∠BOD

1.由CO,EO平分∠BOD与∠AOD,可得:∠AOE=∠EOD=∠AOD/2,∠DOC+∠COB=∠BOD/2,而∠AOE+∠EOD+∠DOC+∠COB=180度,所以有2(∠AOE+∠DOC)=1