如图,PA,PB是圆O的切线,A,B是切点,角APB=80度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:52:07
(1)连接OC,因为OA等于OC,角BAC等于30度所以角ACO=角BAC=30度所以角AOC=180°-30°-30°=120°又因为,PA、PB是圆O的切线所以PA⊥AD,PC⊥OC,所以角PAO
因为PA、PB、DE为圆O的切线所以PA=PB、DC=DA、EC=EB△PDE的周长=PD+PE+DE=PD+DC+PE+EC=PD+DA+PE+EB=PA+PB=2PA所以PA=20/2=10再问:
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
l连接OPOP垂直平分AB交AB于D△OAD∽△OAP∠P=2∠BAC=50°再问:三角形'Oad=oap求解释再答:两个三角形不是全等,是相似。两个都是Rt是三角形且有一个公共角∠AOP或者不用相似
(1)连结OA、OB、OC、OD、OE,∵PA、PB是圆O切线,∴∠OAP=∠PBP=90°,又∵∠APB=70°,∴∠AOB=55°,∵∠OAD=∠OCD=90°,OD=OD,OA=OC,∴RT△A
∠APB=40,那么∠ACE+∠CDP=180-40=140,由于A、B、E均为切点,那么OC平分∠ACE,OD平分∠PDC,所以∠ODE+∠OCE=1/2×(∠ACE+∠CDP)=70,∠COD=1
OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3
延长PO交圆于D∴BD是圆直径∴PD=PB+BD=1+2OB∵PA是圆O的切线∴切割线定理PA²=PB×PD2²=(1+2OB)×1OB=3/2
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO
1.因为PA为圆O切线所以∠OAP等于90度又因为∠AOP=60°所以∠APO等于30度所以角∠OPB等于30度(这个没什么好说的)2.因为∠APO=∠OPBOP=OP∠COP=∠DOP所以△cop全
S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2
证明:连接ABAC,连接BO并延长与圆O相交于点D在△PBA和△PAC中,PA/PC=PB/PA(题意),∠P这公共角,∴△PBA和△PAC相似∴∠PAB=∠PCA连接OAAD,易知∠ADB=∠PCA
连接AO和BO,PO=PO,∠PAO=∠PBO=90°,AO=BO,证明△OAP与△OBP全等.r=2根号3,最大值为6+2根号3再问:这是什么啊???能竖着写吗。我多给你分。谢谢了。
解题思路:根据切线长定理得PA=PB,EB=EQ,FQ=FA,从而得出△PEF周长解题过程:∴△PEF周长24cm
因为是切线,所以角OBP=角OAP都=90度四边形内角和为360,所以角AOB+角APB=180度三角形AOB中,边OA=OB,所以角OBA=角OAB=(180度-角AOB)/2=(180度-(180
证明:连接PO∵PA、PB是圆O的两条切线∴OA⊥PA,OB⊥PB又∵OA=OB=半径,OP=OP∴Rt⊿PAO≌Rt⊿PBO(HL)∴PA=PB
(1)连接PO,OB,设PO交AB于D.∵PA,PB是⊙O的切线,∴∠PAO=∠PBO=90°,PA=PB,∠APO=∠BPO.∴AD=BD=3,PO⊥AB.∴PD=52−32=4.在Rt△PAD和R
证明:连接OA,OB,OP. 点B在圆心O上,且PA=PB;