如图,PA.PC是△ABC外角∩MAC与∩NCA的角平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:47:45
如图,PA.PC是△ABC外角∩MAC与∩NCA的角平分线
四面体PABC中,PA、PB、PC两两垂直,证明△ABC是锐角三角形如题

①设H是△ABC的垂心证明:∵PA^PBPA^PC且PB∩PC=P∴PA^侧面PBC又∵BC平面PBD∴PA^BC∵H是△ABC的垂心∴AH^BC∵PA∩AH=A∴BC^截面PAH又PH平面PAH∴B

如图,P是△ABC所在平面外的一点,PA垂直于PB,PB垂直于PC,PC垂直于PA,PH垂直于平面ABC,H是垂足

延长AH交BC于D,连接PD,因为PB=PC=b,PA=a,所以AC=AB=√(a²+b²),BC=b√2,因为H是△ABC的垂心,所以D为BC中点,即BD=CD,所以PD=BC/

如图,P是△ABC内任意一点,求证:PA+PB+PC> 0.5(AB+BC+CA).

∵PA+PB>AB,PB+PC>BC,PA+PC>CA∴PA+PB+PB+PC+PA+PC>AB+BC+CA∴PA+PB+PC>0.5(AB+BC+CA).

如图,P为等边△ABC内任意一点,连接PA、PB、PC,求证:

解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A

如图,已知P是△ABC内一点.求证:PA+PB+PC>½(AB+BC+AC)

证明:根据三角形两条边长的和大于第三边原理,有:PA+PB>ABPA+PC>ACPB+PC>BC不等式两边分别相加,得2(PA+PB+PC)>AB+BC+AC推出PA+PB+PC>1/2(AB+BC+

如图.P是△ABC外一点,试说明PA+PB+PC>1/2(AB+AC+BC)

PA+PB>AB;(三角形任意两边之和大于第三边)PA+PC>AC;(三角形任意两边之和大于第三边)PB+PC>BC;(三角形任意两边之和大于第三边)以上三个式子相加2PA+2PB+2PC>AB+AC

如图,pb,pc是三角形abc的外角平分线,求证;角bpc=90度-二分之一角a

二分之一(180度-角C)+二分之一(180度-角B)=180度-角bpc(由三角形内角和180度及对角相等定理及外角平分线条件得出)角A=180度-角B-角C整理得,角bpc=二分之一(角B+角C)

已知,如图 p是△ABC内一点,试说明PA+PB+PC>1/2(AB+BC+AC)

才做过这道题.因为在△ABP中AP+BP>AB①在△ACP中PC+PA>AC②在△BCP中,PB+PC>BC③三式相加得2AP+2BP+2PC>AB+BC+AC所以PA+PB+PC>1/2(AB+BC

如图,PB,PC是三角形ABc的外角平分线,求证:角BPC=90度-1/2角A

证明:∵∠DBC=180-∠ABC,BP平分∠DBC∴∠PBC=∠DBC/2=90-∠ABC/2∵∠ECB=180-∠ACB,CP平分∠ECB∴∠PCB=∠ECB/2=90-∠ACB/2∴∠BPC=1

如图,P是三角形ABC的角BAC的外角平分线上的一点.求证:PB+PC>AB+AC

在BA延长线上取一点D使AC=AD;因为P在∠DAC的角平分线上,∴PD=PC.(可以用SAS证明)∴PB+PC=PB+PD;AB+AC=AB+AD=BD;比较等号右端,可知PB+PD>BD;∴PB+

如图,P是等边△ABC外接圆BC上任意一点,求证:PA=PB+PC.

证明:在PA上截取PD=PC,∵AB=AC=BC,∴∠APB=∠APC=60°,∴△PCD为等边三角形,∴∠PCD=∠ACB=60°,CP=CD,∴∠PCD-∠DCB=∠ACB-∠DCB,即∠ACD=

如图:PA,PC分别是△ABC外角∠MAC与∠NCA的平分线,它们交于P,且PD⊥BM于D,PF⊥BN与F. 求证:

过点P作PE⊥AC,垂足为E∵PA为∠MAC的角平分线∴PD=PE(角平分线上的点到角两边的距离相等)∵PF为∠NCA的角平分线∴PF=PE(角平分线上的点到角两边的距离相等)又∵PD=PEPF=PE

如图,P是△ABC内任意一点,试说明 2(PA+PB+PC)>AB+AC+BC

因为:①PA+PB﹥AB(两边之和大于第三边)②PA+PC﹥AC(两边之和大于第三边)③PB+PC﹥BC(两边之和大于第三边)三式相加得2(PA+PB+PC)﹥AB+BC+AC

1.如图,(第一题),PB和PC是△ABC的两条外角平分线,求证:∠BPC=90°-½ ∠BAC.

二题实在是没有求出来.1.在△ABC中,∠A+∠ABC+∠ACB=180°∠A+180°-∠CBO+180°-∠BCE=180°∠A+360°-(∠CBO+∠BCE)=180°在△PBC中,∠PBC+

如图,P为△ABC所在平面外一点,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面ABC于H.求证:

作出AE.BF.CG.相交于H.因为PB垂直PA.PC.所以,PB垂直平面PAC.同理PA垂直平面PBC.PC垂直平面PAB.又因为,BE垂直AC.所以PH垂直BF.同理PH垂直AE.PH垂直CG.所

如图,PB,PC分别是△ABC的外角平分线,PM⊥AB,PN⊥AC,点M,N分别为垂足求证:(1)PM=PN(2)PA平

(1)证明:作PD⊥BC于点D∵BP是角平分线∴PM=PD∵CP是角平分线∴PN=PD∴PM=PN(2)∵PM=PN∴N在∠MAN的平分线上∴AP平分∠MAN

如图,PB,PC分别是△ABC的外角平分线且相交于P.求证:点P在∠A的平分线上.

作PM⊥AB,交AB延长线于M.PN⊥BC于N,PQ⊥AC,交AC的延长线于点Q∵BP是角平分线∴PM=PN∵PQ是角平分线∴PN=PQ∴PM=PQ∴Q在∠A的平分线上再问:最后一步,Q还是P哦再答:

如图.PA,PC分别是△ABC外角∠MAC和∠NCA的平分线,它们交于点P、PD⊥BM于点D,PF⊥BN于点F,求证PD

做PM⊥AC∵AP是角平分线PM⊥ACPD⊥BM∴PD=PM(角平分线性质定理可以直接用)同理PD=PF∴PD=PF再问:可以再完整一点吗?再答:其实这就是完整答案了PD=PM就是定理原型定理是:角平

如图,PB,PC分别是三角形ABC的外角平分线且相交于点P.求证:P在

如图:过P作PD⊥AB,PE⊥AC,PF⊥BC,重足分别是D、E、F因为:PB,PC分别是外角平分线所以:PD=PF,PE=PF所以:PD=PE所以:点P在角BAC的平分线上

如图,P是△ABC外的一点,连接PA、PB、PC,分别取PA、PB、PC的中点D、E、F,△ABC与△DEF相似吗?为什

因为:DE是△PAB的中位线,所以AB//DEDF是△PAC的中位线,所以AC//DFFE是△PCB的中位线,所以CB//FEAB//DEAC//DF所以∠BAC=∠EDFCB//FEAC//DF所以