如图,PAB为圆O的割线,直线PC与圆O有公共点C,且PC2=PA·
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:35:52
延长PO交圆于D,∵PA=7cm,AB=5cm,∴PB=12cm;设圆的半径是x,∵PA•PB=PC•PD,∴(10-x)(10+x)=84,∴x=4.
R=OC=√(13^2-12^2)=5去AB中点D.AD=√(5^2-3^2)=4PD=√(13^2-3^2)=4√10所以PA=4√10+3或者PA=4√10-3
证明:连接AD、BC∵∠A和∠C都对弧BD∴由圆周角定理,得∠A=∠C又∵∠APD=∠CPB∴△ADP∽△CBP∴AP:CP=DP:BP,也就是AP·BP=CP·DP
证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,∴PC2=PQ•PO(射影定理),又∵PC2=PE•PF,∴PQ•PO=PE•PF所以EFOQ四点共圆,∠EQF=∠EOF=2∠BAD,
这是一个定理:弦切角等于所夹弧上的圆周角,记住以后可以直接引用.证明:设圆心为O,连接OC、OA则OC⊥PC∠PCA+∠OCA=90°∠OCA=∠OAC∠COA=180°-∠OCA-∠OAC=180°
延长PO交圆于D,∵PA=7cm,AB=5cm,∴PB=12cm;设圆的半径是x,∵PA•PB=PC•PD,∴(10-x)(10+x)=84,∴x=4.故选A.
太汗了,证明∠PAB=90°就行了连接BC,根据同弧对应的圆周角相等知∠ABC=∠PDA,AB是直径知∠ACB=90°,于是∠PAB=∠PAC+∠BAC=∠PDA+∠BAC=∠ABC+∠BAC=90°
连结OB,OA,OD,OC,BD由圆形的半径可知OB=OA=OC=OD,因为PB=PD,所以∠PBD=∠PDB因为OB=OD所以∠OBD=∠ODB因为等量减等量,差相等所以∠OBP=∠ODP因为OB=
因为PC是圆O的切线,C为切点,PAB为割线,所以PC平方=PA乘PB,因为PC=4,PB=8所以16=8PA,PA=2.因为PC是圆O的切线,C为切点,所以角ACP=角B,(弦切角等于它所夹的弧所对
由切割线定理PC·PD=PE²得:PD=PE²/PC=6²/3=12.在△PAC和△PDB中:∠PAC=∠PDB、∠BPD为共同角,故两者相似.则:BD/AC=PD/PA
连接OC、OD、AC,∵弧AC=弧CD,∴AC=CD,在△AOC和△DOC中,OA=ODAC=CDOC=OC,∴△AOC≌△DOC(SSS),∴∠ODC=∠OAC,∠OCD=∠OCA,∠AOC=∠DO
证明,根据圆割线与切线的关系,可知PA*PB=PC*PD,又因为PA=PC,则PB-PA=PD-PC即:AB=CD
:(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.所以狐等∴CD=BD
由割线长定理得:PA•PB=PC•PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD为正三角形,∠CBD=12∠COD=30°.
用割线定理,设半径为x得6×(6+8)=(10.9-x)×(10.9+x)x²=34.81x1=5.9x2=-5.9(舍去)∴圆O的半径为5.9厘米
圆的半径:6倍根号2面积:18倍根号7
应该是PA=PC证明:做OE⊥PAB于E做OF⊥PCD于FPA=PC,OP=OP,OA=OC==>△POA≌△POC∠OPA=∠OPC即,OP为APC的角平分线则OE=OF【斜边及一直角边对应相等的两
(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.∴CD=BD.∴CD=BD.(2)∵AC∥OD,∴PAPC=AOCD.∵PAPC=56,CD=BD,
延长PO到E,延长线与圆O交于点E,连接EB,AC,∵OC=3,OP=5,∴OE=OC=3,∴EP=OE+OP=3+5=8,CP=OP-OC=5-3=2,设PA=AB=x,则BP=2x,∵四边形ACE