如图,PD垂直正方形ABCD所在平面,AB=2,PC与平ABCD所成角45°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:44:47
如图,PD垂直正方形ABCD所在平面,AB=2,PC与平ABCD所成角45°
如图,在四棱柱P—ABCD,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,

在正方形ABCD中,连接AC、BD,相交与点G,连接EG∵点E是PC的中点,点G是AC的中点∴EG∥PA∵EG为平面EDB上的线∴PA//平面EDB∵侧棱PD⊥底面ABCD∴PD⊥CD,PD⊥BC∵P

如图ABCD是正方形,PD⊥面ABCD,PD=DC(1)求证:AC⊥PB;(2)求AD与PB所成角的正切值

证明:(1)连结DB∵PD⊥平面ABCD又∵四边形ABCD为正方形∴DB⊥AC∴AC⊥PB(三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直.

如图 在四棱锥P-ABCD中 底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=PC

证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC

如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点,求

(1)取PA中点E,连接EF、DE因PD=DC,而DC=AD(正方形)则PA⊥DE(三线合一) 因PD⊥平面ABCD则PD⊥AB(AB在平面ABCD上)又AD⊥AB(正方形)则AB⊥平面PA

如图 边长为1的正方形ABCD中,P为对角线AC上任意一点,分别连接PB,PD,PE垂直PB,交CD于E.求证PE=PD

据题意先求得:△ABP≌△ADP.∠ABP=∠ADP.∴∠CDP=∠CBP.∵∠DEP=∠ACD(45°)+∠CPE.∠CBP=180°-∠BPC-∠BCP(45°),∵∠BPC=90°-∠CPE.∴

如图已知PD垂直于正方形ABCD所在的平面,AB=2,PD=m,记二面角D-PB-C的大小θ,若θ

C在平面PDB上的投影为,AC与BD的交点O.(因为PD⊥面ABCD,所以PD⊥OC,又正方形内OD⊥OC;所以OC⊥面BPD;所以……)过C做CF⊥BP交BP于F,则∠CFO为二面角D-PB-C;θ

如图,正方形ABCD,PD垂直平面ABCD,且PD=DC=1,求二面角A-PB-C的大小

用△AOB和△COB全等来证明CO⊥PB再问:求全等条件再答:你又提了个问我已经帮你解答了去看看

如图,PD垂直正方形ABCD所在平面,AB=2,PC与平面ABCD所成角是四十五度,F是AD中点,M是PC中点.求证:D

设BC的中点为N,连MN,DN,则MN//PB,DN//FB所以平面DMN//平面PFB又DM⊂平面DMN所以DM//平面PFB

如图,四边形ABCD为正方形,PD垂直面ABCD,PD平行QA,QA=AB=1/2PD、证明面PQC垂直面DCQ

如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D-xyz;依题意有Q(1,1,0),C(0,0,1),P(0,2,0);则 DQ→=(1,1,0),&n

如图,四棱锥P-ABCD中,底面ABCD为正方形,PA=PD,PA垂直PD,PA垂直平面PDC, E为棱PD的中点

①连BD,交AC于O,连OE∵ABCD是正方形∴O是BD中点又E是PD中点∴OE是△DBP的中位线∴PB∥OE∵OE∈平面EAC∴PB∥平面EAC②∵PA⊥平面PDC∴PA⊥DC∵ABCD是正方形∴D

如图,在四棱锥P-ABCD中.底面ABCD为正方形,且PD垂直平面ABCD,PD=AB=1,E.F分别是PB,AD的中点

画出图,连接FP、FB,△FBP中,FP=√(PD²+FD²)=√(1²+0.5²),FB=√(AB²+FA²)=√(1²+0.5

如图,四棱锥P-abcd中,底面abcd是平行四边形,且ab=ad.Pd垂直于底面abcd,证明pb垂直ac(2)若Pd

证明:(1)abcd是平行四边形,且ab=ad,则abcd是棱形,ac⊥bd,pd⊥底面abcd,pd⊥ac,ac⊥面bdp,ac⊥pd.再问:若pd=2倍根三,ab=ac=2求b到平面pac的距离再

如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为(  )

如图,以D为坐标原点,DA所在直线为x轴,DC所在线为y轴,DP所在线为z轴,建立空间坐标系,∵点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1∴A(1,0,0),P(

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=1/2PD

1.DQ=PQ=√2,DP=2所以DQ^2+PQ^2=DP^2所以DQ⊥PQCQ=√3,PQ=√2,PC=√5所以CQ^2+PQ^2=CP^2所以CQ⊥PQ所以PQ⊥平面DCQ所以平面PQC⊥平面DC

如图,PD垂直正方形ABCD所在的平面,PD=DC,E为PC的中点,EF垂直于PB于点F,求证,PB垂直于平面EFD

传统方法:如图向量方法:建系D为原点,DA、DC、DP分别为x、y、z轴目标:求点F的坐标,然后证明向量PB与向量DE、DF数量积均为零.

如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面PAD⊥底面ABCD,PA=PD,且PD与底面ABCD所成角为4

题目有误,应该是PA=AD1.∵面PAD⊥面ABCD∴∠PDA就是PD与底面所成的角即∠PDA=45°又PA=AD∴PA⊥AD又面PAD⊥面ABCD∴PA⊥面ABCD2.Q为PD中点:连DE延长交CB

如图,四棱锥P-ABCD的底面ABCD为正方形,PD⊥底面ABCD,PD=AD.

(1)证明:∵PD⊥底面ABCD,AC⊂底面ABCD,∴AC⊥PD,又∵底面ABCD为正方形,∴AC⊥BD,而PD与BD交于点D,∴AC⊥平面PBD,…(4分)又AC⊂平面PAC,∴平面PAC⊥平面P

如下图,四棱柱P-ABCD中,PD垂直底面ABCD,底面ABCD是正方形,PD=DC=a,则异面直线PB与AC所成角的大

90度.异面直线的夹角就是投影的夹角!PB在平面ABCD上的投影是DB,故PB与AC的夹角就是AC与DB的夹角!ABCD是正方形,所以夹角是90度.