如图,PD垂直正方形ABCD所在平面,AB=2,PC与平ABCD所成角45°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:44:47
http://zhidao.baidu.com/question/452997972.html?seed=0
在正方形ABCD中,连接AC、BD,相交与点G,连接EG∵点E是PC的中点,点G是AC的中点∴EG∥PA∵EG为平面EDB上的线∴PA//平面EDB∵侧棱PD⊥底面ABCD∴PD⊥CD,PD⊥BC∵P
证明:(1)连结DB∵PD⊥平面ABCD又∵四边形ABCD为正方形∴DB⊥AC∴AC⊥PB(三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直.
证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC
(1)取PA中点E,连接EF、DE因PD=DC,而DC=AD(正方形)则PA⊥DE(三线合一) 因PD⊥平面ABCD则PD⊥AB(AB在平面ABCD上)又AD⊥AB(正方形)则AB⊥平面PA
据题意先求得:△ABP≌△ADP.∠ABP=∠ADP.∴∠CDP=∠CBP.∵∠DEP=∠ACD(45°)+∠CPE.∠CBP=180°-∠BPC-∠BCP(45°),∵∠BPC=90°-∠CPE.∴
C在平面PDB上的投影为,AC与BD的交点O.(因为PD⊥面ABCD,所以PD⊥OC,又正方形内OD⊥OC;所以OC⊥面BPD;所以……)过C做CF⊥BP交BP于F,则∠CFO为二面角D-PB-C;θ
用△AOB和△COB全等来证明CO⊥PB再问:求全等条件再答:你又提了个问我已经帮你解答了去看看
设BC的中点为N,连MN,DN,则MN//PB,DN//FB所以平面DMN//平面PFB又DM⊂平面DMN所以DM//平面PFB
如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D-xyz;依题意有Q(1,1,0),C(0,0,1),P(0,2,0);则 DQ→=(1,1,0),&n
看图,点击图片,另存为,看就可以了
①连BD,交AC于O,连OE∵ABCD是正方形∴O是BD中点又E是PD中点∴OE是△DBP的中位线∴PB∥OE∵OE∈平面EAC∴PB∥平面EAC②∵PA⊥平面PDC∴PA⊥DC∵ABCD是正方形∴D
画出图,连接FP、FB,△FBP中,FP=√(PD²+FD²)=√(1²+0.5²),FB=√(AB²+FA²)=√(1²+0.5
证明:(1)abcd是平行四边形,且ab=ad,则abcd是棱形,ac⊥bd,pd⊥底面abcd,pd⊥ac,ac⊥面bdp,ac⊥pd.再问:若pd=2倍根三,ab=ac=2求b到平面pac的距离再
如图,以D为坐标原点,DA所在直线为x轴,DC所在线为y轴,DP所在线为z轴,建立空间坐标系,∵点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1∴A(1,0,0),P(
1.DQ=PQ=√2,DP=2所以DQ^2+PQ^2=DP^2所以DQ⊥PQCQ=√3,PQ=√2,PC=√5所以CQ^2+PQ^2=CP^2所以CQ⊥PQ所以PQ⊥平面DCQ所以平面PQC⊥平面DC
传统方法:如图向量方法:建系D为原点,DA、DC、DP分别为x、y、z轴目标:求点F的坐标,然后证明向量PB与向量DE、DF数量积均为零.
题目有误,应该是PA=AD1.∵面PAD⊥面ABCD∴∠PDA就是PD与底面所成的角即∠PDA=45°又PA=AD∴PA⊥AD又面PAD⊥面ABCD∴PA⊥面ABCD2.Q为PD中点:连DE延长交CB
(1)证明:∵PD⊥底面ABCD,AC⊂底面ABCD,∴AC⊥PD,又∵底面ABCD为正方形,∴AC⊥BD,而PD与BD交于点D,∴AC⊥平面PBD,…(4分)又AC⊂平面PAC,∴平面PAC⊥平面P
90度.异面直线的夹角就是投影的夹角!PB在平面ABCD上的投影是DB,故PB与AC的夹角就是AC与DB的夹角!ABCD是正方形,所以夹角是90度.