如图,P为角AOB内一点,M,N分别为OA,OB上任一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:59:04
如图所示:.
1,角p=角o2,p+o=180°3,p+o=90°再问:其实我是画不来图,求图呀!谢谢再答:
作M关于OA的对称点M'作N关于OB的对称点N'连结M'N'分别交OA、OB于O、P连结MP,OP,NP,MN此时四边形MNOP边长最短
图中所有相等的线段有OC=OD,PC=PD,MC=MD原因如下:∵∠MCO=∠MDO=90°,MC=MD,OM=OM∴△OCM≌△ODM(直角三角形HL)∴OC=OD,∠COM=∠DOM又∵OP=OP
如图,∵P点关于OA、OB的对称点P1,P2,∴P1M=PM,P2N=PN,△PMN的周长=MN+PM+PN=MN+P1M+P2N=P1P2,∵P1P2=15,∴△PMN的周长为15.故选B.
到OA、OB距离相等的点在角AOB的角平分线上,到m、n距离相等的点在线段mn的垂直平分线上,所以p点就是角AOB的角平分线与线段mn的垂直平分线的交点,图很简单,自己就画了
7CM,因为P1P2分别是P关于AOBO的对称点,所以又PM=P1MPN=P2N即P1P2就等于三角形PMN的周长,中学时代经常碰到得题--
(1)∵∠PON=∠MPN=β,∠PNO=∠MNP(同一个角)∴△OPN∽△PMN.(2)y=x+MN=x+PM*PN/OP(3)S=OP*X*sinβ再问:详细点啊,拜托了···!
因为p和p1,p2对称,所以np=np2,mp=mp1,三角形周长既是求p1p2的长度连接0p2,op1,∠p2OB=∠BOP,∠POM=∠AOP1,所以∠p1op2=60°op2=op1=op=10
如图,已知P为∠AOB的边OA上一点,以P为顶点的∠MPN的两边分别交射线OB于证明:(2)在△OPN和△PMN中,∠PON=∠MPN=60°,∠ONP=∠PNM,∴△
∵点m,n分别是点p关于oa,ob的对称点∴OA是MP的垂直平分线;OB是NP的垂直平分线(对应点的连线被对称轴垂直平分)∴EP=EMFP=FN(线段的中垂线上一点到线段两端点的长度相等)∴FP+EF
我来再答:再答:希望采纳我的答案哦再问:图片能否再清晰一点再答:再答:解决了嘛?采纳哦
(1)n移动得距离即on为2op=4(2)证:在三角形OPN与三角形PMN中,∠AOB=∠MPN,∠PNO=∠PNM.所以△OPN∽△PMN后面两个还在想,所以就先到这里了啊(1)补充因为旋转角为30
∵P1,P2分别是P关于OA、OB的对称点,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+PN+MN=P1M+P2N+MN=P1P2,∵P1P2=8cm,∴△PMN的周长8cm.故选C.
△PCD=8cm.理由如下:连接P1.P∵P1,P关于AO对称,所以△P1PC是等腰三角形(这里要详细,三线合一.)P1C=PC同理P2D=PD∵P1P2=P1C+P2D+CD=C△CDP∴△CDP的
因:P关于OA、OB的对称点是P1、P2,连接OP1、OP2得:OP=OP1=OP2,由因:连接P1、P2交OA于M,交OB于N,P和P1的对称轴为OA,P和P2的对称轴为OB,得:P1M=PM,P2
作法:1、连续OP; 2、以O为圆心,OP为半径作弧交OA于点C; 3、分别以P、C为圆心,OP为半径作弧相交于点D; 4、过点P、D作直线MN,则MN为所求.证明:(略)
再答:连接mn分别以m,n点为圆心,画弧,两弧交点即为所求
(1)作点P关于OA、OB的对称点M、N;(2)连接M、N,分别交OA,OB分别于P1、P2,则△PP1P2即为所求的三角形.∵P1、P2分别是P关于OA、OB的对称点,∴∠P1OA=∠AOP,∠P2
作关于OA的对称点P'关于OB的对称点P''连P'P''交OA于M,交OB于NpMN就是所求作的三角形