如图,P是正△ABC内一点,P到三个顶点的距离PA=2,PB=4,PC=2根号3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:52:27
如图所示:.
1、∠P+∠1+∠2=180(1)∠A+2∠1+2∠2=180(2)2(1)-(2)得2∠P-∠A=180即∠P=90°+1/2∠A成立2、∠P+∠1+∠2=180(1)∠A+3∠1+3∠2=180(
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
先说第二问,你可以把三角形PAB绕B点顺时针旋转60度,AB恰好与BC重合,假设P点旋转后为Q点,可以知道QB=PB=8,QC=PA=6角PBQ=PBC+QBC=PBC+ABP=60度,所以三角形PB
∵PA+PB>AB,PB+PC>BC,PA+PC>CA∴PA+PB+PB+PC+PA+PC>AB+BC+CA∴PA+PB+PC>0.5(AB+BC+CA).
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC
证明:根据三角形两条边长的和大于第三边原理,有:PA+PB>ABPA+PC>ACPB+PC>BC不等式两边分别相加,得2(PA+PB+PC)>AB+BC+AC推出PA+PB+PC>1/2(AB+BC+
∵△P’AB≌△PAC∴∠P’AB=∠PAC∵∠BAP+∠PAC=60°∴∠P'AB+∠BAP=60°∵P'A=PA,∠P'AP=60°连接P'P∴△P'AP是等边△∵P'A=PA=6∴P'P=PA=
证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.
才做过这道题.因为在△ABP中AP+BP>AB①在△ACP中PC+PA>AC②在△BCP中,PB+PC>BC③三式相加得2AP+2BP+2PC>AB+BC+AC所以PA+PB+PC>1/2(AB+BC
∵∠BPA=∠PBA+BAP,∠CPD=∠ACP+∠CAP∴∠BPD+∠CPD>∠BAP+∠CAP
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
延长BP与AC交于D点,∠BPC是△PDC外角所以∠BPC>∠BDC而∠BDC是△ABP的外角,所以∠BDC>∠A故∠BPC>∠A.
题目错了!延长BP交AC于点E,在△ABE中,AB+AE>BE在△PEC中,PE+EC>PC∴AB+AE+PE+EC>BE+PC∴AB+AE+PE+EC>BP+PE+PC(注BE=BP+PE,AE+D
∵∠BPC=∠PDC+DCP∴∠BPC>∠PDC∵∠PDC=∠A+∠ABD∴∠PDC>∠A∴∠BPC>∠A
证:因为PC
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所
这道题的方法比较巧妙,其主要思想就是旋转.在这道题中,一般看到像这题这样的图形,并且有正三角形这一条件都是旋转.但是一般在做题时不说旋转(不好表达),一般是通过全等来移动三角形(当然要是你还没有学到全
如果S△AFP+S△PCD+S△BPE=332,那么△ABC的内切圆半径为(A.1再问:过程呢...再答:由于有根号,所以我没法写,自己去菁优网看看再问:没优点不能看..--再答:
因为:①PA+PB﹥AB(两边之和大于第三边)②PA+PC﹥AC(两边之和大于第三边)③PB+PC﹥BC(两边之和大于第三边)三式相加得2(PA+PB+PC)﹥AB+BC+AC