如图,RT△ABC,以AB为直径作圆O交AC于点D,弧BD=弧DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:22:55
显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.
4度,连接EF,DF根据直角三角形性质DE=1/2AB=1/2BC,EF为三角形中位线,故EF=1/2BC∠ABD=20°,DEB为等腰三角形综上,DEF为等腰三角形,∠EFA=24∠DAC=70+2
fbe和cbe因为等边三角形,所以cb=fb,ab=eb又因为直角,且角abe=60°所以∠cbe=150°∵∠cbf=60°∴∠fbe=360°-60°-90°-60°=150°∵∠cbe=∠fbe
联结CE、DE因为在Rt△ABC中,点E是AB中点所以CE=BE同理BE=DE所以BE=DE所以E在CD的中垂线上因为EF⊥CD即EF是CD的中垂线所以CF=FD
(1)证明:连接ODOC∵AC是圆的切线,且D是切点∴∠CDO=90°∴∠CDO=∠ABC=90°∵OD和OB都是圆的半径∴OD=OB又∵CO是△CDO和△CBO的公共边∴△CDO≌△CBO(HL)∴
知识点:等腰直角三角形的面积等于斜边平方的4分之1.估计图形阴影部分是以两个直角边为底的两个等腰直角三角形的面积和:S阴影=1/4×4^2=4.
EP=FQ,理由如下:∵Rt△ABE是等腰三角形,∴EA=BA,∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG,在△EAP与△ABG中,∠EPA=∠AGB=90°∠PE
(1)如图1,过C作CM⊥x轴于M点,∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,则∠MAC=∠OBA,在△MAC和△OBA中∠CMA=∠AOB=90°∠MAC=∠OBAAC=AB∴△M
(1)过C作CM⊥x轴于M点,如图1,∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°则∠MAC=∠OBA在△MAC和△OBA中∠CMA=∠AOB=90°∠MAC=∠
(1)过C点作CD⊥AB,垂足为D,在Rt△ABC中,AC=AB2−BC2=52−32=4,∴S△ABC=12•AC•BC=12•AB•CD,∴12×4×3=12×5•CD∴CD=125,由题意,AB
∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC=82+62=10(cm),∴S阴影部分=12×6×8-90π×52360=24-25π4(cm2).故选A.
因为△ABC为等腰直角三角形,且△ABD为等边三角形所以容易看出CD为∠ADB的角平分线,所以∠ADC=30°又△CDE为等边三角形,所以∠ADE=30°,那么AD为∠CDE的角平分线因为△CDE为等
(1)证明:连接OE,∵BC与⊙O相切于点E,∴OE⊥BC,即∠OEB=90°.∴∠OEB=∠ACB=90°.∴OE∥AC.∴∠F=∠OED.∵OE=OD,∴∠ODE=∠OED.∴∠F=∠ODE=∠A
取AB中点为P,AC中点为Q,连接PD,PM,MQ,EQPD,EQ分别是RT△ABD和RT△ACE,斜边上中线所以,PD=1/2AB,EQ=1/2AC因PD=PB,EQ=CQ∠PDB=∠PBD,∠QC
证明:∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AE=AC,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即:∠DAC=∠BAE,在△ABE和△ADC中,AB=
在Rt△ABC中,AC的平方+BC的平方=AB的平方.\x0dRt△ABE是等腰三角形,AE=BE,AE的平方+BE的平方=AB的平方,\x0dAE的平方=1/2AB的平方\x0dS△ABE=1/2A
设直角三角三边为a、b、c阴影面积=1/2*1/2a^2+1/2*1/2b^2+1/2*1/2*c^2=1/4(a^2+b^2+c^2)=1/4*18=9/2再问:a^2是a的二次方吗?没看懂:-(再
(1)连接OP,AP.∵AB是⊙O的直径,∴∠APB=90°.∴∠APC=90°.∵Q为AC的中点∴PQ=AQ=QC.(1分)∴∠PAQ=∠APQ∵OA=OP,∴∠OAP=∠OPA∴∠PAQ+∠OAP