如图,RT△ABC=90°,AC=1,BC=根号3,CD是AB上的高线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:15:53
如图,RT△ABC=90°,AC=1,BC=根号3,CD是AB上的高线
如图 在rt△abc中 ∠c 90,∠a=20°,AB=4,解直角三角形

∠b=70度,BC=4sin20度=1.368,AC=4cos20度=3.758

如图,已知Rt△ABC中,∠B=90°,过顶点A作AD//BC

25°∠ACF=∠AFC=2∠D∠D=∠DCB∠ACF=2∠ECB∠ECB=25°

如图:在Rt△ACB中,∠ACB=90°,∠ABC=55°,将ABC顺时针旋转得Rt△A'CB',且使点

∵△A'CB'是由△ABC旋转得到的∴B'C=BC∴∠ABC=∠B'=∠CBB'=55°∴∠DBB'=110°∵∠B'=55°∠A'CB'=90°在四边形BDCB'中∠BDC=360°-∠A'CB'-

已知,如图 在RT△ABC中,∠BAC=90°,∠ABC=30°,AB=3根号5,在RT△BDC中,∠BDC=90°,A

在RT△ABC中,∠BAC=90°,∠ABC=30°所以cos∠ABC=(根号3)/2(1)又cos∠ABC=AB/BC(2)AB=3根号5(3)根据(1)(2)(3)得出BC=2根号15

如图,在RT△ABC中,∠C=90°,BC=a,AC=b,AB=c,圆O为RT△ABC的内切圆,求圆O的半径

设圆O的半径为r,则:S△OAB+S△OBC+S△OAC=S△ABC,即:cr/2+ar/2+br/2=ab/2,r(a+b+c)=ab,圆O的半径=ab/(a+b+c)

如图,在Rt△ABC中,角C=90°,BC=a,AC=b,求△ABC的内切圆圆O的半径

=1/2(BC+AC-AB)用的是切线的性质再问:好吧..没有过程吗?

如图,在RT△ABC中,∠ACB=90°.(1)a=5,c=13,

=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13

如图,在RT△ABC中,∠ACB=90°,∠A=35°,以直角顶点C为旋转中心将RT△ABC旋转到RT△A'B'C'的位

因为∠A=35°,所以∠B=90-35=55度.因为BC=B'C,所以∠CB'B=∠CBB'=55度,∠B'CB=180-55-55=70度.那么∠DCB=90-70=20度,∠ABC=55度.所以∠

1、如图1,∠C=90°,Rt△ABC中,∠A=30°,Rt△A‘B’C中,∠A‘=45°,点A’,B分别在线段AC,B

1.由于△APQ为等腰三角形所以∠A=∠APQ由于∠A=30°所以∠AQP=120°所以∠AQP=120°由于∠A‘=45°所以∠ACA‘=15°所以θ=∠ACA‘=15°2.在矩形中,长宽以及对角线

如图,在Rt△ABC中,∠ACB=90°,DE为中位线,∠CEF=∠A,

(1)DE为中位线→DE‖BF→∠AED=90°→DE为三角形ACD的高线——aE为中点→DE为三角形ACD的中线——b综合a,b→三角形ACD为等腰三角形,AD=CD→∠A=∠ACD∠CEF=∠A→

如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,△A′B′C是Rt△ABC绕点C按顺时针方向旋转3

根据旋转的性质,可知,∠BCB′=30°,∠B=60°,∴∠CDB′=90°.∵BC=BC′=2cm,∴B′D=1,DC=3,∴S△CDB′=32cm2.

如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经

∵∠ACB=90°,AC=BC=1,∴AB=2,∴S扇形ABD=30•π(2)2360=π6.又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△

相似三角形如图在RT△ABC中,∠ACB=90°,△ABC外作一个RT△BCD,使∠BDC=90°,设AB=a,BC=b

∵∠ACB=∠BDC=90°∴应该有两种可能情况使⊿ABC∽⊿BDC(1)当∠DCB=∠ABC时AB/BC=BC/CD∴a/b=b/c即b²=ac(2)当∠ABC=∠BDC时AC/CD=AB

(2013•老河口市模拟)如图,Rt△ABC中,∠ACB=90°,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的

(1)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的∴AC=AC′AB=AB′∠CA C′=∠B AB′∴ACAB=AC′AB′∴△AC C′∽△AB&n

如图,在Rt△ABC和Rt△A'B'C'已知∠C=∠C'=90°AB=A'B',AC=A'C'说明△ABC=△A'B'C

在Rt△ABC和Rt△A'B'C'中AB=A'B'AC=A'C'所以△ABC全等于△A'B'C'(HL,即斜边直角边)在两个直角三角形中,如果他们的斜边和一条直角边相等,那么这两个三角形全等,这就是H