如图,RT三角形ABC中,CD为斜边AB上的高,E为CD的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:26:35
如图,RT三角形ABC中,CD为斜边AB上的高,E为CD的中点
在Rt三角形ABC中,求CD

 再问:好像不对再答:嗯再答:过程没错,答案错了,是7╱8再问:可是没有这个选项再答:选择题?再答:把题目全拍过来,快点再问: 再问: 再答:难怪!角c多少度?再问:90

如图,在RT三角形ABC中,角C=90,角ABC=60,BD平分角ABC.若AD=6,求CD的长

已知角ABC=60,则角A=30°;又因为,BD是角ABC的平分线,所以角DBA=30°所以在等腰三角形ADB中,DB=AD=6;在直角三角形DBC中,角DBC=30°,所以sin30°=CD/DB,

如图,RT三角形ABC中,角C=90,

证明:因∠CAD=∠BAE,∠C=∠ABE=90°故△ACD∽△ABE故AC/AB=CD/BE即AB*CD=AC*BE因∠EBF+∠ABC=90°=∠ABC+∠BAC故∠EBF=∠BAC又∠F=∠C故

如图、在RT三角形abc中,三角形abc=90°,ac=5cm,bc=12cm,则Rt三角形ABC斜边上的高CD的长为多

由面积法:60/13cm再问:具体过程呢再答:勾股定理:斜边长为13cm,所以13*h=12*5,因此h=60/13cm再问:我已经算出来了设斜边AC上的高为h,由勾股定理:斜边AC=13由三角形面积

如图,RT三角形ABC中,

如图,过A做线段AM,使得AM=AB=AC,且角DAM=角DAC,则角EAM=角EAB,三角形ABE与三角形AME全等,三角形AMD与三角形ACD全等.从而角AMD=角ACD=45°,同理角AME=4

如图,Rt三角形ABC中,CD是斜边上的高,三角形ACD和三角形CBD都和三角形ABC相似吗?证明

在ΔABC与ΔACD中,∠ACB=∠ADC=90°,∠A=∠A,∴ΔABC∽ΔACD,∴AC/AB=AD/AC,∴AC^2=AD*AB.在ΔABC与ΔCBD中,∠ACB=∠CDB=90°,∠B=∠B,

如图,Rt三角形ABC中,CD是斜边上的高,求证CD^=AD*BD

∵△ABC为Rt三角形∴角C=90°又∵CD是斜边上的高∴角CDA=角CDB=90°=角C∵角A=角A角B=角B∴△ACD∽△ABC∽△CDB∴AD/CD=CD/BD∴CD^2=AD*BD

三角形相似证明,如图,在Rt三角形abc中,角acb等于90度cd垂直于ab

(1)因为,CD⊥AB则,∠ACB=∠CDB=90°即,∠A+∠ABC=∠BCM+∠ABC=90°所以,∠A=∠BCM①因为,CD⊥AB,DH⊥BM则,∠CDB=∠BHD=90°即,∠DBM+∠EDB

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图,已知Rt三角形中,角ABC等于90°,CD垂直AB交AB于点..

∵CD⊥AB即△BCD是直角三角形∵E是Rt△BCD斜边BC的中点∴DE=1/2BC过C做CG∥DF交AB于G∵为BC中点∴DE是△BCG的中位线∴DE=1/2CG∴BC=CG又∵CG∥DF∴△ACG

如图,在rt三角形abc中,ad=bc,cd=be 求角boe的度数

过A作AF垂直于AC,使得AF=DC.可得,三角形FAC全等于三角形DCB.得:FD=BD,角FDA=角DBC.即可得,角BDF=90.那么三角形BDF是等腰直角三角形.角DBF=45.又AF=DC=

如图在RT三角形ABC中,CD是斜边AB上的高,求证三角形ACD相似三角形ABC

用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

已知,如图,在RT三角形ABC中,

求证啥东西?麻烦采纳,谢谢!

已知:如图在Rt三角形ABC中, . 帮帮忙 ~

连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45

如图,已知等腰RT三角形ABC中

解题思路:由于∠C=90°,BC=4,AC=4,易知△ABC是等腰直角三角形,于是∠ABC=45°,又△A′B′C′是△ABC平移得到的,那么∠C=∠A′C′B′=90°,进而可求∠BOC′=45°,

如图,在RT三角形ABC中,角AVB=RT角,CD垂直AB于D,AD=8,BD=4,求SINA的值

CD^2=BD*CD=8*4=32AC^2=AD^2+CD^2=8^2+32=96AC=4√6所以:SINA=CD/AC=32/(4√6)=8/√6

如图,在Rt三角形ABC中,角ABC等于90度,CD垂直于AB,

相等,因为共圆弧对应角相等,即角DFE=角BCD,角BCD=角BAC.再问:是要求相似三角形吗再答:不需要。

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的