如图,△ABC,∠ACB=90度,点D是斜边AB的中点,DE⊥AC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:19:10
如图,△ABC,∠ACB=90度,点D是斜边AB的中点,DE⊥AC
P为RT△ABC所在平面α外一点,∠ACB=90°(如图)

从P做a平面的投影定为o,则Po为所求距离.若Po求得,则不难验证直角三角形中角PCo即为所求夹角.从O分别作AC、BC的垂线,垂足为c、b;由于P到AC、AB距离相等且ACB为90度,不难验证四边形

如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.

证明:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的

如图,在△ABC中,已知∠ABC=∠ACB,BD,CE分别是∠ABC,∠ACB的平分线,请说明BD=CE

证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE

如图,在△ABC中,∠A=∠ACB,CD是∠ACB的∠平分线,CE是△ABC的高

(1)∵∠CDB=∠A+∠ACD且CD平分∠ACB∴∠DCB=∠ACD因为∠A=∠ACB∴∠CDB=∠ACB+∠DCB又∵∠ACB=2∠DCB∴∠CDB=3∠DCB(2)∵CE是△ABC的高∠DCE=

如图,在Rt△ABC中,∠ACB=90°,AC=BC,∠CAD=∠BAD,

证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A

如图,在RT△ABC中,∠ACB=90°.(1)a=5,c=13,

=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13

已知:如图,在△ABC中,∠ACB=90度,CD⊥AB,垂足为点D,

证明三角形全等就行了(角边角原理)ASA由题意可得∠B+∠BCD=∠ECF+∠BCD=90所以∠B=∠ECF又∵∠ACB=∠CEF=90,CE=BC∴△ABC=△FCE(ASA)∴AB=FC

如图,在直角三角形ABC中,∠ACB=90°,AC=BC=8.

设时间为x则面积S=1/2(8-1.5x)2x解得x=2/3(31^0.5-4)其中"31^0.5"为31开方

已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,

设AD=X、CD=Y、BC=Z在Rt△ABC中,∠ACB=90°,CD⊥AB所以三角形ACD相似三角形CBD所以AD/CD=CD/BD所以CD平方=AD×BD即Y平方=9X(1)在三角形ACD和三角形

已知如图在RT△ABC中,∠ACB=90°,CA=CB

证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠

如图,在Rt△ABC中,∠ACB=90°,D,E是AB上的点

是不是求<DCE如果是:(注,<表示角)<BEC=<ECB=<DCE+<DCB,<CDA=<ACD=<DCE+<ACE,<CDA=<B+<DCB,<BEC=<A+<ACE,<B+<DCB=<DCE+<

如图,在Rt△ABC中,∠ACB=90°,DE为中位线,∠CEF=∠A,

(1)DE为中位线→DE‖BF→∠AED=90°→DE为三角形ACD的高线——aE为中点→DE为三角形ACD的中线——b综合a,b→三角形ACD为等腰三角形,AD=CD→∠A=∠ACD∠CEF=∠A→

如图,在Rt△ABC中,∠ACB=90度,AC=3,AB=5

∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.∴BC=4.以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R

如图,已知∠DBC=∠ACB,要证明△ABC≌△DCB

若以SAS为依据,则需要添加一个条件是(AB=DC )若以AAS为依据,则需要添加一个条件是( ∠BDC=∠BAC )若以ASA为依据,则需要添加一个条件是( 

如图,已知:在Rt△ABC中,∠ACB=90°,M是AB边的中点,CH⊥AB于H,CD平分∠ACB.

Rt△ABC中,∠ACB=90°,M是AB边的中点所以AM=CM=BM∠CAB=∠ACM∠CAB=90-∠ABC∠BCH=90-∠ABC所以∠CAB=∠BCH所以∠BCH=∠ACM有CD平分,∠ACB

如图,BD、CE为△ABC的高,求证:∠AED=∠ACB.

证明:∵∠ADB=∠AEC=90°,∠A=∠A,∴△ABD∽△ACE.∴ADAE=ABAC.又∠A=∠A,∴△ADE∽△ABC.∴∠AED=∠ACB.

如图,Rt△ABC中,∠ACB=90°,D,E分别是AB,BC的中点

亲···你的图···1;四边形DCFE为平行四边形,理由如下:连接DE,因为E为CB中点,所以CE=BE,DE=DE.因为D,E分别是AB,BC的中点,所以DE为Rt△ABC的中位线,所以DE平行且等

如图,在Rt△ABC中,∠ACB=90°,已知CD⊥AB,BC=1

(1)∵CD⊥AB,∴∠BDC=90°,∵∠DCB=30°,∴∠B=60°,在Rt△ACB中,∠ACB=90°,∴tan60°=ACBC=3,又BC=1,则AC=3;(2)在Rt△BDC中,tan∠B

如图,△ABC中,AB=BC=AC,∠ACB=60°

不是.△ABC中,AB=BC=AC,∠ACB=60°,说明ABC位置是定的.BD=AD,说明D在AB中垂线上,位置不确定.BP=AB,说明P在以B为圆心,AB为半径的圆上,位置不确定.BPD中有两点位

如图,已知在△ABC中,角ACB=90°,M为AB中点,DM⊥AB,CD平分∠ACB求证MD=AM

CD平分角ACB,角ACB=90度,则角ECB=45度M为AB中点,则AM=CM=BM,角MCB=角MBC则角MCE=角MCB-角ECB=角MBC-45度角DEM=角CEB=180-角ECB-角MBC