如图,△ABC中,AC=BC=5,tanB=三分之四,点M为AB中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:57:27
4再问:要详细一点的、可以么、再答:MN=BN+AM-AB=BC+AC-AB=5+12-13=4
证明:如图,作DF⊥AB,DE⊥AC,∵AD平分∠BAC,∴DE=DF,∠BFD=∠CED=90°,∵D是BC的中点,∴BD=CD,在Rt△BDF和Rt△CDE中,DF=DE,BD=CD∴Rt△BDF
设角DAE为x则ADE=(180-2x)ADC=(192-2x)=BAD+DBA=30+(180-30-x)/2得x=58再问:������ϸһ����
过点A做BC的高,交CB的延长线于D,设AD=x,DB=y,则在直角△ADB中,根据勾股定理有x2+y2=102=100(1)同理,在直角△ADC中,x2+(y+9)2=172=289(2)由(1)(
解题思路:等腰三角形解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p
由AD垂直于BC得:AB平方-BD平方=AC平方-DC平方,可得(AB+BD)(AB-BD)=(AC+DC)(AC-DC)又已知AB+DC=AC+DB则AB-DB=AC-DC,可得AB+BD=AC+D
三角形ABC中,AC垂直于BC,AC=BC,CF=CD,求证BF=AD,BF垂直于AD(D在BC的延长线上,连接AD,F在AC上连接BF,连接EF,E在BA上∵AC=BC,CF=CD而∠BCF=∠AC
(一)16-6t(二)全等,在△BPD和△CQP中BP=CQ=6∠B=∠CBD=½AB=20÷2=10CP=BC-BP=16-6=10BD=CP∴△BPD≌△CQP(SAS)(三)如果不相等
假设BC边上的高交BC于D设CD为a,则BD为25-a勾股定理AB²-BD²=AD²=AC²-CD²即:26²-(25-a)²=1
首先知道∠cbf=90°,可得到∠abc=45°=∠fbg先证明∠ace=∠adc,可得到∠adc=∠cfb在证明△acd≌△cbf,可得到bf=cd,可得到bf=bd最后利用∠fbg=∠abc=45
有题意,有AB^2-BD^2=AC^2-CD^2有(AB+BD)(AB-BD)=(AC+CD)(AC-CD)而AB+BD=AC+CD,有AB-BD=AC-CD将上面两个式子相加有AB=AC,既是等腰三
由AD垂直于BC得:AB平方-BD平方=AC平方-DC平方,可得(AB+BD)(AB-BD)=(AC+DC)(AC-DC)又已知AB+DC=AC+DB则AB-DB=AC-DC,可得AB+BD=AC+D
不是.△ABC中,AB=BC=AC,∠ACB=60°,说明ABC位置是定的.BD=AD,说明D在AB中垂线上,位置不确定.BP=AB,说明P在以B为圆心,AB为半径的圆上,位置不确定.BPD中有两点位
(1)作AE⊥BC交BC于点E,∵AB=AC,∴BE=EC=3,在Rt△AEC中,AE=92−32=62,∴Sin∠C=AEAC=629=223;(2)在Rt△BDC中,Sin∠C=BDBC,即BD6
过点A做AD⊥BD,交AB延长线D设BD为X ∵CD⊥BD BC=9 BD=X∴CD=根号9²-X²在RT△A
设AD=X,DB=Y在直角三角形ADB中,由勾股定理,得AB^2=AD^2+BD^2即10^2=X^2+Y^2①在直角三角形ACD中,由勾股定理,得AC^2=AD^2+CD^2即17^2=X^2+(9
用海伦公式边长分别为a、b、c,面积S公式S=√[p(p-a)(p-b)(p-c)]p为半周长:p=(a+b+c)/2
过点A作AD⊥BC于D∵AB=AC=13,AD⊥BC∴BD=CD=BC/2=5∴AD=√(AB²-BD²)=√(169-25)=12∴S△ABC=BC×AD/2=10×12/2=6
解答提示:如图,设外接圆圆心为O,连接AO并延长交BC于D,连接OB因为三角形ABC是等腰三角形所以AD⊥BC,BD=CD=6根据勾股定理得AD=8设OA=OB=R,则OD=8-R由勾股定理得:BD^