如图,△abc为等边三角形,以边bc为直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:46:32
如图,△abc为等边三角形,以边bc为直径
如图,在△ABC中,以AB、AC为边向外做等边三角形△ACE和等边三角形△ABD,连接CD、BE

答:是定角.理由:因为三角形ACE和三角形ABD是等边三角形所以,角DAB=角CAE=叫DBA=60度DA=AB,AC=AE所以角DAB+角BAC=角CAE+角BAC即角DAC=角BAE所以三角形DA

如图,△ABC是等边三角形,DF分别是BC、AC的中点,以AD为边作等边三角形ADE,连接EF

,△ABC是等边三角形D是BC中点,∠ABF=∠CBF=∠BAD=∠CAD=30°AD⊥BCBF⊥AC∠ADE+∠CDE=90°∠CDE=30°==∠DBFBF‖DEBF=AD=DE四边形BDEF是平

如图,在△ABC中,分别以AB,AC,BC为边在BC的同侧做等边三角形ABD,等边三角形ACE,等边三角形BCF

因为三角形BCF和三角形ACE是等边三角形所以角BCF=角ACE=60度又因为角BCF=角BCA+角ACF,角ACE=角FCE+角ACF所以角BCA=角ECF(1)因为三角形BCF和三角形ACE是等边

如图,△ABC为任意三角形,以边AB,AC为边分别向外作等边三角形ABD和等边三角形ACE

∵⊿ABD和⊿ACE都是等边三角形∴AC=AE,AD=AB∵∠DAC=∠DAB+∠BAC=60°+∠BAC∵∠EAB=∠EAC+∠BAC=60°+∠BAC∴∠DAC=∠EAB∴⊿DAC≌⊿BAE(SA

如图,△ABC为等边三角形,D.F分别是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE

1、在△ACD和△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2、1)四边形CDEF为平行四边形,理由如下设AB与ED交于G∵△ABC为正三角形∴AC=BC,∠B=∠A

已知如图△ABC,以BC为边在点A的同侧作等边三角形DBC,以AC,AB为边分别向外做等边三角形EAC和等边三角形FBA

等边△ABD、△EBCAB=BD,BE=BC∠EBC=∠DBA=60度∠EBC-∠ABE=∠DBA-∠ABE∠EBD=∠CBA△DBE≌△ABCDE=AC等边△ACFAC=AF所以DE=AF同理:EF

如图,以△ABC的边AB、AC为边作等边三角形ABD和等边三角形ACE,以AD、AE为边作平行四边形ADFE.

①若四边形ADFE为矩形时,∠BAC=360-2x60-90=150度.②若平行四边形ADFE不存在,则D,A,E在一条直线上,∠BAC=180-2x60=60度③若平行四边形ADFE是菱形,则AD=

如图,△ABC的三个内角都小于120°,分别以AB、BC、CA为边,向三角形外侧作三个等边三角形ABC、ACE、BCF,

三角形BAE与DAC中,AB=AD,角BAE=DAC,AE=AC所以三角形BAE与DAC全等所以角AEB=ACO因为角CAE+AEB=COE+ACO所以角COE=CAE=60度所以tanCOE=tan

已知:如图,分别以Rt△ABC的直角边AC.BC为边,在Rt△ABC外作两个等边三角形(省略).

∵△FBC与△ECA为等边三角形∴∠FCB=∠ECA=60°,FC=BC,CE=CA∴∠FCB+∠BCA=∠ACE+∠BCA即∠FCA=∠BCE∴△FCA≌△BCE(SAS)∴FA=BE

如图,△ABC是等边三角形,D,F分别是AB,BC上的点,且AD=BF,以AF为一边画等边三角形AF为一边画等边三角形A

相等因为△ABC和△AEF是等边三角形所以∠BAC=∠EAF=60°所以∠BAC-∠BAF=∠EAF-∠BAF所以)∠CAF=∠BAE(2)△ADC全等于△BFA△BCD全等于△CAF△FBE全等于△

如图,在等边三角形ABC中,D是BC上一点,以AD为边作等边三角形ADE,连接EC

1.三角形ABD和ACE啊证明:边AB=ACAD=AE因为角BAD+角DAC=角EAC+角DAC所以角BAD=角EAC两边夹一角相同,这两个三角形也就相同了.2.因为1两个三角形相等,所以角ABD=角

如图,以△ABC的各边为边,在BC的同一侧做等边三角形DBC,等边三角形ABE,等边三角形ACF.

当三角形ABC是等腰三角形时.用反推法.若要四边形AEDF是菱形则AE=AF,以下就有各种边相等关系,AE=AF=ACAE=ED=BD=BC,则,AC=BC,所以若要四边形AEDF是菱形则△ABC为等

如图,△ABC为等边三角形,D是BC延长线上一点,连接AD,以AD为边作等边三角形ADE,连接CE.(1)线段CA、CD

1)CA=CD+CE2)证:∵∠BAD=60º-∠DAC=∠DAE-∠DAC=∠CAEAB=ACAD=AE∴⊿ABD≌⊿ACE∴DB=EC∴CA=BC=BD+CD=CD+CE

如图,已知△ABC为等边三角形,D为BC上一点,以AD为边作∠ADE=60°,DE与△ABC的外.

1、BM=BD,∠A=60°,故△BMD是等边三角形,得出:∠AMD=120°,AM=DC.2、∠ACB=60°,CE是外角平分线,得出:∠DCE=120°3、∠ADM+CDE=60°,∠CED+∠C

如图,△ABC是等边三角形D,E分别是BC,CA上的点,且BD=CE,以AD为边作等边三角形ADF.求证:

先证明△ABD≌△BCE因为AB=BC∠ABC=∠ACB=60°BD=CE所以AD=BE又等边△ADF所以AD=DF所以BE=DF因为△ABD≌△BCE所以∠BAD=∠CBE∠ADB=∠BEC∠C=∠

(2)如图,分别以△ABC的边AB,AC为边向外作等边三角形ABD和等边三角形ACE,CD与BE相交于点D,

(2)、∠AOD=∠AOE证明:过点D作AF⊥CD,AG⊥BE垂足为F,G先证:△ADC≌△ABE(SAS)得:AF=AG(全等三角形对应边上的高相等)也可由面积法得到这个结论∴AO平分∠DOE(角平

如图,△ABC为等边三角形,D,F分别为BC,AB上的一点,且CD=BF,以AD为边作等边三角形ADE

证明:连结BE.因为三角形ABC和三角形AED都是等边三角形,所以AB=AC,AE=AD,角EAD=角BAC=60度,角ACB=60度,角ABC=60度,所以角EAB=角DAC,所以三角形EAB全等于

如图,△ABC为等边三角形,D、F分别为CB、BA上的点,且CD=BF,以AD为一边作等边三角形ADE

易证△ACD≌△CBF∴AD=CF又等边三角形ADE∴AD=DE∴CF=DE且由内错角相等易证CF‖DE∴四边形CDEF是平行四边形

如图,已知△ABC是等边三角形

解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S

如图 以任意△ABC的两边AB,AC为边在△ABC外制作等边三角形ABD和等边三角形ACE,是说明DC=BE

∵三角形ABD和三角形ACE是等边三角形∴AD=ABAC=AE角DAB=角CAE=60°所以角DAC=角BAE在△DAC和△BAE中AD=AB角DAC=角BAEAC=AE△DAC≌△BAE(SAS)∴