如图,△ABC内接于⊙O,弦AF⊥BC于点H,G是BF的中点,求证:AC=2OG

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:13:30
如图,△ABC内接于⊙O,弦AF⊥BC于点H,G是BF的中点,求证:AC=2OG
如图,△ABC内接于⊙O,AB是⊙O的不是直径的弦,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由.

连结AO并延长,交圆于A,E,连结AC,EC,则∠ACE=90°,∴∠EAC+∠AEC=90°,∵∠CAD=∠ABC,∴∠CAD+∠EAC=90°,∴直线AD与⊙O相切.

已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是AD的中点,连接BD并延长交EC的延长线于点G,连接A

(1)证明:∵C是AD的中点,∴AC=CD,∴∠CAD=∠ABC∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAD+∠AQC=90°又CE⊥AB,∴∠ABC+∠PCQ=90°∴∠AQC=∠PCQ∴在△

如图,△ABC内接于⊙O,AD是△ABC的高,AD的延长线交⊙O于点G,AE是⊙O的直径。(1)若AB=6,AC=5,A

解题思路:根据题意,由圆的性质和三角形全等的知识整理,分析可以求得解题过程:

已知,如图,△ABC内接于园O,AB为非直径的弦,∠CAE=∠B,求证:AE与圆O相切于点A

连接CO,并延长交圆于D点,连接AD和AO.得出CD为圆的直径,∠OAC=∠OCA,∠B=∠ADC因为CD为直径,所以∠ADC+∠OCA=90°.又因为∠B=∠CAE,∠B=∠ADC,∠OAC=∠OC

已知,如图,△ABC内接于⊙O,弦AD与弦BC垂直,AE是⊙O的直径.

因为AE是⊙O的直径,所以∠ABE=90°,∠BAE=90°-∠BEA因为弦AD与弦BC垂直,所以∠CAD=90°-∠ACB因为∠BEA=∠ACB所以∠BAE=∠CAD

如图,已知△ABC内接于圆O,∠CBD=∠A,判断BD于圆O的位置关系,并说明理由

BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

直线和圆:如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.

连接OB∵∠A=30°∴∠BOC=60°∵OB=OC∴∠OBC=60°∵∠BCD=30°∴∠D=30°∴∠OCD=180°-60°-30°=90°∴CD与⊙O相切阴影的面积=S△OCD-OCD的面积∵

如图,圆O与圆A相交于C,D两点,A,O分别为两圆圆心,三角形ABC内接于圆O,弦CD交AB于G,交AO于F.求证AC的

利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于

如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交于AC于点E,交⊙O于点D,若PE=PA,∠ABC=60°,P

∵PA是圆O的切线,PDB是圆O的割线,∴PA2=PD•PB,又PD=1,BD=8,∴PA=3,(3分)又PE=PA,∴PE=3.∵PA是圆O的切线,∴∠PAE=∠ABC=60o,又PE=PA,∴△P

(2010•烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①A

∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,弧AE=弧BE=12弧AEB;(故①⑤正确)∴AE=BE;(故②正确)由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;故选B.

已知:如图,△ABC内接于⊙O,点D在半径OB延长线上,∠BCD=∠A=30°.

(1)直线CD与⊙O相切.理由如下:如图,∵∠A=30°,∴∠COB=2∠A=60°.又∵OC=OB,∴△OBC是等边三角形,∴∠OCB=60°.又∵∠BCD=30°,∴∠OCD=∠OCB+∠BCD=

如图,△ABC内接于⊙O,高AD,BE相交于点H,延长AD交△ABC的外接圆于点G,

(1)连接BG,根据同一弧所对应的圆周角相等,可推出∠BGA=∠ACB再看△AHE和△ACD,共用∠DAC,而且∠BEC和∠ADC都是直角则△AHE∽△ACD,推出∠AHE=∠ACB,根据之前∠BGA

如图△ABC内接与圆o,AD垂直于bc于

角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O

1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈

如图,已知△ABC内接于圆O,∠CBD=∠A,判断BD与圆O的位置关系

答:BD与⊙O的关系是相切理由:作直径BE,连接CE因为BE是直径,所以∠BCE=90度所以∠EBC+∠E=90度因为∠A=∠E,∠A=∠CBD所以∠EBC+∠CBD=90度所以BE⊥BD根据“过直径

如图,三角形ABC内接于⊙O,AB为非直径的弦,∠CAB=∠B,则AE与⊙O相切于点A吗?

∠CAB=∠B与AE线无关,所以您的题目有误,应为∠CAE=∠B.连接AO并延长交圆的另一端于D,再连接CD.AD为⊙O的直径,故∠ACD=90°,则∠D+∠CAD=90°.∠B=∠D(圆周角相等),

如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,若∠MAC=∠ABC.

(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线.(2)①证明:∵D是弧AC的中点,∴∠

如图,△ABC内接于⊙O,∠BAC的外角平分线交⊙O于D.求证:△DBC为等腰三角形.

证明:∵四边形ABCD是圆内接四边形∴∠FAD=∠DCB∵∠DAC=∠DBC,AD平分∠FAC∴∠FAD=∠DAC∴∠DCB=∠DBC∴DB=DC∴DBC为等腰三角形.