如图,△ABC内接于圆O,AE是圆O的半径,AD垂直BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:41:15
证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免
因为AE是⊙O的直径,所以∠ABE=90°,∠BAE=90°-∠BEA因为弦AD与弦BC垂直,所以∠CAD=90°-∠ACB因为∠BEA=∠ACB所以∠BAE=∠CAD
证明:AE为直径所以∠ABE=90度因为AD垂直BC所以∠ADC=90度因为∠ABE=∠ADC,∠E=∠C(都是弧AB对的圆周角)所以△ABE∽△ADC所以AB/AD=AE/AC所以AB*AC=AE*
连接CE∵AB=AC∴∠B=∠ACB∵∠B=∠E∴∠E=∠ACB∵∠CAD=∠EAC∴△ACD∽△AEC∴AC/AD=AE/AC∴AC²=AD*AE∴36=4*AE∴AE=9
①AN?是不是没写完?②∵△ABC≌△ADE{已知AC=AD,AB=AE,公共角∠A},∠B=∠E;∵△ANC∽△AEN{公共角∠EAN,同弧圆周角∠ANC=∠B=∠E},故AN/AC=AE/AN=A
我也是刚刚做到这道题其实只要连接OD,OA=OD,所以等腰三角形,两角相等又D是弧BC中点,根据垂径定理推论,可知OD所在的直径垂直BC,又AE垂直BC于E,有两个直角,所以平行...接下来会了吧~~
连接BE∵AB=AC∴∠AEB=∠ABC∵∠BAD=∠BAE∴ΔABD∽ΔABE∴AD:AB=AB:AEAE=AB^2/AD=36/4=9
相等∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD
关于如图,三角形ABC内接于圆O
因为角aeb=角acb因为ae直径AD为BC上的高所以角aeb=角aec=角acb所以三角形abe和adc相似所以AB/AE=AD/AC得AB·AC=AE·AD
∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD
∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD即角1=角2
证明:连接OE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴BE=CE,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OA=OE,∴∠OEA=∠OAE,∴∠OAE=∠EAD.
因为AB=AC所以∠B=∠ACB因为∠B=∠AEC所以∠AEC=∠ACB又∠EAC为公共角所以△CAD∽△EAC所以AC/AE=AD/AC即AC的平方=AD*AE
角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8
(1)∵AD是∠BAC的角平分线∴∠BAD=∠DAC又△ABC和△ADC同圆共边∴∠ABC=∠ADC可知,△ABE与△BDC相似,则AB/AD=AE/AC即AB*AC=AE*AD(2)由AD是∠BAC
所求的两个角分别问△BAE和△CAD的内角∵AE是圆的直径,B点在圆上∴∠ABE=90°(直径所对的圆弧角等于90°)又AD⊥BC,得∠ADC=90°即∠ABE=∠ADC∴要证∠BAE=∠CAD只需证
1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈
证明:∵∠AEC与∠ABC都是弧AC所对应的圆周角∴∠AEC=∠ABC=∠ABD而AE为直径,∴∠ACE=∠ADB=90°∴△ABD与△AEC相似∴AB/AE=AD/Ac∴AC·BC=AE·AD
连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE