如图,△ABC和△ADE都是等腰三角形,AD=AE,AB=AC,角DAB=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:47:54
如图,△ABC和△ADE都是等腰三角形,AD=AE,AB=AC,角DAB=
已知:如图,△ABC和△ADE都是等边三角形,求证:EB=DC

在△ACD和△ABE中AC=AB∠CAD=∠BAEAD=AE∴△ACD≌△ABE(SAS)∴EB=DC

如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.

(1)证明:延长DM交BC于N,∵∠EDA=∠ABC=90°,∴DE∥BC,∴∠DEM=∠MCB,在△EMD和△CMN中∠DEM=∠NCMEM=CM∠EMD=∠NMC,∴△EMD≌△CMN,∴CN=D

如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.

(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴

已知:如图,△ABC和△ADE都是等边三角形,求证:EB=DC

证明:,△ABC和△ADE都是等边三角形所以角CAB=角BAE=60度,AC=AB,AD=AE所以三角形CAD全等于三角形BAE(边角边)所以EB=DC

已知,如图,△abc和△ade都是等边三角形求证,eb=dc

证明:三角形ABC和三角形ADE是等边三角形,则AD=AE,AB=AC,角CAD=角BAE,则三角形CAD全等于三角形BAE,所以,EB=DC

如图,△ABC,△ADE都是等腰直角三角形,请说明

1)证明:∵△ABC,△ADE都是等腰直角三角形∴AC=BAAD=AE∠DAE=∠CAB=90°∴∠DAE+∠BAE=∠CAB+∠BAE∴∠CAE=∠BAD在△CAE和△BAD中AC=BA∠CAE=∠

如图,已知△ABC≌△ADE,∠BAD=20°. 在线等.

20°因为△ABC≌△ADE,所以∠BAC=∠DAE∠BAD=∠BAC-∠DAC∠CAE=∠DAE-∠DAC所以∠BAD=∠CAE=20°再问:咳咳,求步骤咯~再答:望采纳,O(∩_∩)O谢谢!祝学习

已知,如图,△ABC和△ADE都是等边△.求证:EB=DC(稍后发图)

不用图也可以解出来,只要证明三角形ABE全等于三角形ACD即可,AB=AC,AD=AE,角EAB=角DAC(具体情况看图,就是利用角BAC=角EAD加或减同一个角所得)

如图,△ABC和△ADE都是等腰直角三角形,CE和BD相交于M,BD交AC于点N.

(1)∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∴∠BAC+∠CAD=∠DAE+∠CAD.∴△BAD≌△CAE.∴BD=CE.(2)∵△BAD≌△C

如图,△ABC和△ADE都是等边三角形.求证BD=CE.

在△ABD和△ACE中AB=ACAD=AE∠BAD=60°-∠CAD,∠CAE=60°-∠CAD∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE

如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE

相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽

如图,已知△ABC和△ADE都是等边三角形,连接CD、BE.求证:CD=BE.

证明:∵△ABC和△ADE都是等边三角形,∴AB=AC,AE=AD,∠DAE=∠CAB,∵∠DAE-∠CAE=∠CAB-∠CAE,∴∠DAC=∠EAB,在△ADC和△AEB中,AD=AE∠DAC=∠E

如图①,△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°.

(1)证明:因为△ABC和△ADE都是等腰直角三角形所以AE=AD,AC=AB,∠BAC=∠EAD所以:△ACE≌△ABD(两边夹角定理)(2)不变,根据(1)证明

如图△ABC和△ADE都是等边三角形,BE=CD,求证∠AEB=60°+∠DCB

角EAB=角BAC=60.由边角边全等判定三角形AEB全等三角形ADC、角1=角2.角AEB+角1+角EAB=180,即角AEB+角2+60=180又角2+角BCD=60所以,角AEB=120-角2=

1.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.

(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(