如图,△ABC和△ADE都是等腰三角形,AD=AE,AB=AC,角DAB=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:47:54
在△ACD和△ABE中AC=AB∠CAD=∠BAEAD=AE∴△ACD≌△ABE(SAS)∴EB=DC
(1)证明:延长DM交BC于N,∵∠EDA=∠ABC=90°,∴DE∥BC,∴∠DEM=∠MCB,在△EMD和△CMN中∠DEM=∠NCMEM=CM∠EMD=∠NMC,∴△EMD≌△CMN,∴CN=D
(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴
证明:,△ABC和△ADE都是等边三角形所以角CAB=角BAE=60度,AC=AB,AD=AE所以三角形CAD全等于三角形BAE(边角边)所以EB=DC
证明:三角形ABC和三角形ADE是等边三角形,则AD=AE,AB=AC,角CAD=角BAE,则三角形CAD全等于三角形BAE,所以,EB=DC
1)证明:∵△ABC,△ADE都是等腰直角三角形∴AC=BAAD=AE∠DAE=∠CAB=90°∴∠DAE+∠BAE=∠CAB+∠BAE∴∠CAE=∠BAD在△CAE和△BAD中AC=BA∠CAE=∠
20°因为△ABC≌△ADE,所以∠BAC=∠DAE∠BAD=∠BAC-∠DAC∠CAE=∠DAE-∠DAC所以∠BAD=∠CAE=20°再问:咳咳,求步骤咯~再答:望采纳,O(∩_∩)O谢谢!祝学习
不用图也可以解出来,只要证明三角形ABE全等于三角形ACD即可,AB=AC,AD=AE,角EAB=角DAC(具体情况看图,就是利用角BAC=角EAD加或减同一个角所得)
(1)∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∴∠BAC+∠CAD=∠DAE+∠CAD.∴△BAD≌△CAE.∴BD=CE.(2)∵△BAD≌△C
在△ABD和△ACE中AB=ACAD=AE∠BAD=60°-∠CAD,∠CAE=60°-∠CAD∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE
相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽
证明:∵△ABC和△ADE都是等边三角形,∴AB=AC,AE=AD,∠DAE=∠CAB,∵∠DAE-∠CAE=∠CAB-∠CAE,∴∠DAC=∠EAB,在△ADC和△AEB中,AD=AE∠DAC=∠E
(1)证明:因为△ABC和△ADE都是等腰直角三角形所以AE=AD,AC=AB,∠BAC=∠EAD所以:△ACE≌△ABD(两边夹角定理)(2)不变,根据(1)证明
角EAB=角BAC=60.由边角边全等判定三角形AEB全等三角形ADC、角1=角2.角AEB+角1+角EAB=180,即角AEB+角2+60=180又角2+角BCD=60所以,角AEB=120-角2=
(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(