如图,△abc是圆o的内接三角形,ab为直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:41:36
如图,△abc是圆o的内接三角形,ab为直径
如图,△ABC是圆O的内接三角形,I是△ABC的内心,连接AI并延长交BC于点E,交圆O于点D.有能力的试试~

②∵∠BAD=∠EBD,∠D=∠D∴△BAD∽△EBD∴AD/BD=BD/ED∴x/2=2/y∴y=4/x∵BD≤AD≤2R∴2≤x≤6即y=4/x(2≤x≤6)③∵AE=3,即x-y=3联立y=4/

如图,△ABC内接于圆O,若圆的半径是2,AB=3,求sinC.

作直径AD,连接BD,∵∠ACB和∠ADB都对弧AB,∴∠ACB=∠ADB,∵圆的半径是2,∴AD=2+2=4,∵AD为直径,∴∠ABD=90°,∴sinC=sinD=ABAD=34.

已知:如图,△ABC内接于圆O,弦AD与BC垂直,AE是圆O的直径.求证:∠BAE=∠CAD

证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免

如图,△ABC是圆O的内接三角形,∠C=∠OAB,OA=8cm,求AB的长.

 因为AB弧所对的圆心角为∠AOB,圆周角为∠C所以∠AOB=2∠C因为OA=OB,所以∠OAB=∠OBA因为∠OAB=∠C所以∠AOB=2∠OAB=2∠OBA在△OAB中,由内角和定理,得

如图 △abc是圆o的内接三角形sin∠B=4/5,AC=8,求圆O的半径.

显然∠AOC=2∠Bsin∠B=sin∠AOC/2=4/5则cos∠AOC=cos2∠B=1-2sin²∠B=-7/25画图有OA向量-OC向量=CA向量则(OA向量-OC向量)²

如图,△ABC是圆o的内接三角形AE是圆O的直径 AF是圆O的弦 AF垂直于BC垂足为D BE与CF相等吗?为什么?

证明:∵AE是⊙O的直径∴∠ABE=90°∴∠BAE+∠AEB=90°∵AF⊥BC∴∠ADC=90°∴∠CAF+∠ACB=90°∵∠AEB=∠ACB(同弧所对的圆周角相等)∴∠BAE=∠CAF∴BE=

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,△ABC内接于圆O,AE是圆O的直径,AD⊥BC于点D.∠BAE与∠CAD相等吗

∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

如图.三角形ABC内接于圆O,P,B,C在一直线上,且PA的平方=PBXPC,求证:PA是圆O的切线

PA^2=PB*PC,PA/PB=PC/PA,<APB=<CPA,△APB∽△CAP,<PAB=<ACP,∴PA是圆O的切线.(圆外切割线逆定理). 若要继续证明,则

​如图,已知△ABC是⊙O的内接三角形,AB=AC,D是圆上任意

射线是角平分线再问:图1,为什么是连接DA再答:因为弧AB和弧AC相等,所以所应角相等

已知:如图,△ABC是○O的内接三角形,角ACB的平分线交圆O于点D,过点D作圆O的切线L.求证AB平行于l.

证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线

如图,三角形是圆O的内接三角形,AD是圆O的直径,AD=8,且角ABC=角CAD.

我们知道,在同圆或等圆中,同弧对应的圆周角相等,再结合已知条件∠CAD=∠ABC故有∠ADC=∠ABC=∠CAD,又AD是直径,所以△CAD是等腰直角三角形.∴∠ADC=∠CAD=45°弧AC长=8π

如图,三角形ABC是圆O的内接三角形,角A是30°,BC是2cm,求圆O的半径

连接OB,OC,所以;∠BOC=2∠A=60°,cos60°=(OB^2+OC^2-BC^2)/2OBOC,即(2r^2-4)/2r^2=1/2,r=2

如图,△ABC内接于圆O,AD是△ABC的边BC上的高,AE是圆O的直径,连接BE,求证:∠BAE=∠CAD

所求的两个角分别问△BAE和△CAD的内角∵AE是圆的直径,B点在圆上∴∠ABE=90°(直径所对的圆弧角等于90°)又AD⊥BC,得∠ADC=90°即∠ABE=∠ADC∴要证∠BAE=∠CAD只需证

如图△ABC内接于圆O,AB是圆O的直径,角CBD=角ABC判断直线AD与圆O的位置关系

应该是∠CAD=∠ABC吧证明:∵AB是圆的直径∴∠C=90°∠B+∠CAB=90°又∠CAD=∠B∴∠CAD+∠CAB=90°∠DAB=90°即OA⊥ADOA是半径∴AD与圆O相切

如图,△ABC内接于○o,ae是圆o的直径,ad是△ABC中BC边上的高,求证:AC·BC=AE·AD

证明:∵∠AEC与∠ABC都是弧AC所对应的圆周角∴∠AEC=∠ABC=∠ABD而AE为直径,∴∠ACE=∠ADB=90°∴△ABD与△AEC相似∴AB/AE=AD/Ac∴AC·BC=AE·AD

如图,三角形ABC内接于圆O,点D是弧BC的中点,AE是三角形ABC的高求怔:AD平分角OAE

连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE

(2014•汕头二模)如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2

(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE.∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC.∵AB是圆O的直径,∴BC⊥AC,且DC∩AC=C.∴BC⊥平面ADC.∵DE∥