如图,△bad是由△BEC在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:32:02
∵△ABC∴∠B+∠C+∠BAC=180°∵∠B=70°∠C=40°∴∠BAC=70°∵AD是∠BAC的角平分线∴∠BAD=∠DAC=35°∠ADC=∠B+∠BAD=105°
证明:如图(1)、∵四边形ABCD是平行四边形∴AB∥CD且AB=CD,AD∥BC且AD=BC ∠B=∠D∵BE=AB/2,DF=CD/2∴BE=DF∴△BEC≌△DFA(SAS
(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴
已经用不同颜色标出来,自己数一下.哈哈!
因为e是db中点,所以ae,ec是直角三角形adbdcb的中线所以ae=1/2db=ec
有题目可知三角形BAD是等腰三角形∠BAD=180-2∠B∠B=180-2∠B∠BAD=180-2(90-∠C)∠BAD=2∠C如果哪里不清楚可以问我
证明:∵四边形ABCD是菱形∴AD//BC(菱形对边平行)∴∠B+∠BAD=180°∵∠BAD=2∠B∴3∠B=180°∠B=60°∵AB=BC(菱形邻边相等)∴△ABC是等边三角形(有一个角是60°
在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形
BD=1Xsinθ/2Abd的面积:1/2xBDXAB.cotθ/2=0.5cosθ/2Bcd面积:1/2xBDXBD.sin60=√3/4(sinθ/2)2S=0.5cosθ/2+√3/4(sinθ
证明:∵在Rt△ABC中,∠BAC=90°,∴B+∠C=90°(直角三角形的两个锐角互余);又∠BAD=2∠C(已知),∴∠BAD+∠DAC=2∠C+∠DAC=∠B+∠C,即∠B=∠C+∠DAC,∵∠
∵AB=AC,∴∠B=∠C∵∠BAD=∠CAE,∴∠ADE=∠AED,∴AD=AE∴△ADE是等腰三角形.
∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB,∴∠ACB=∠DBC,∴BE=CE,∴△BEC为等腰三角形
相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽
连结EC∴∠BAE=∠BCE∵AE是直径∴∠ACE=90°∴∠ACB+∠BCE=90°∵AD⊥BC∴∠DAC+∠ACB=90°∴∠BCE=∠DAC∴∠BAE=∠DAC∴∠BAE+∠EAD=∠DAC+∠
设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+
(1)证明:∵ABAC=ADCE,∠BAD=∠ECA,∴△BAD∽△ACE,∴∠B=∠EAC,∵∠ACB=∠DCA,∴△ABC∽△DAC,∴ACCD=BCAC,∴AC2=BC•CD.(2)∵△BAD∽
∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中,∵AB=AD∠BAC=∠DAEAC=AE,∴△ABC≌△ADE,∴BC=DE.
∠D+∠BCD=180°60°+∠D+(180°-∠BCD)/2=180°∴∠BCD=100°,∠D=80°∴∠BAD=100°再问:60°+∠D+(180°-∠BCD)/2=180°这是啥意思勒再答
根据已知条件:角CBE=角ABD,角BCE=角BAD可以判定△ABD∽△CBD,所以AB:BD=CB:BE且∠ABD=∠CBE;而∠ABC=∠ABC+∠DBC;∠DBE=∠CBE+∠DBC,故∠ABC
(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(