如图,一矩形于圆O相交,若AB=4,BC=6,DE=2,则DF=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:47:24
如图,一矩形于圆O相交,若AB=4,BC=6,DE=2,则DF=?
(2010•怀柔区一模)如图,圆O和圆O'相交于A,B两点,AC是圆O'的切线,AD是圆O的切线,若BC=2,AB=4,

因为AC是圆O′的切线,∴∠CAB=∠D,∵AD是圆O的切线,∴∠BAD=∠C,∴△ABC∽△DBA,∴ABBC=BDAB,又BC=2,AB=4,∴BD=AB2BC=8故答案为:8

如图,直线AB,CD相交于点O,OM⊥AB于点O

(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°﹣(∠2+∠AOC)=180°﹣90°=90°.(2)由已知∠BOC=4∠1,即90°

已知:如图,矩形ABCD的两条对角线相交于点o,角AOD=120°,ab=4cm,求矩形的对角线的长

∵ABCD是矩形∴OA=OB∵∠AOD=120°∴∠AOB=60°∴△AOB是等边三角形∴∠BAO=60°∴∠ACB=30°∵AB=4∴AC=2AB=8cm

如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=2∠AOB,若AC=1.8cm,试求AB的长

∠BOC与∠AOB互补,则∠BOC=2∠AOB=120度,∠AOB=60度.矩形对角线BD平分AC,有OA=OB,边角边有三角形OAB为等边三角形,即有AB=OB=OA=(1/2)*AC=0.9cm.

已知,如图,矩形abcd的对角线ac,bd相交于点O,∠aod=∠120°,ab=4,求矩形对角线的长

∵∠AOD=120°∴∠AOB=180°-∠A6D=60°∵ABCD是矩形∴AC=BDOA=1/2ACOB=1/2BD∴OA=OB∴△OAB是等边三角形∴OA=OB=AB=4∴AC=BD=8

如图矩形abcd的对角线ac bd相交于点o,ab=2,bc=4

5/2,过程同楼上差不多,他结果不知怎么是3/2,从图上看也要比2大的.

如图,已知四边形ABCD是矩形,对角线AC,BD相交于点O,CE∥DB,交AB的延长线于E.求证:AC=CE.

图错了,要不就是题输错了按照文字叙述来说,分别证两个平行四边形,根据对边相等CE=BD=AC

如图,矩形ABCD的两条对角线相交于点o,角AOB=60°,AB=10cm,求矩形的对角线的长.

根据题意可知三角形AOB为等边三角形.对角线的长=2AB=2x10=20cm

如图,矩形ABCD的两条对角线相交于点O,已知∠AOD=120°,AB=3,求矩形对角线的长

角AOD=120度,所以角AOB=180-120=60度,三角形AOB是等腰三角形(矩形的性质),所以角ABO=角BAO=60度,三角形AOB是等边三角形.AO=AB=3,对角线的长=2AO=6

如图,直线AB与CD相交于点O

∵∠COE=3∠EOD,又∠COE+∠EOD=180°∴∠EOD=180°÷(3+1)=45°∵∠AOE=90°∴∠BOE=180°-90°=90°∴∠BOD=∠BOE-∠EOD=90°-45°=45

如图,矩形ABCD的对角线相交于点O,CE平分∠BCD交AB于点E,交DB于点F

(1)∵四边形ABCD是矩形∴OA=OB∵∠OAB=∠OBA∵∠AOD=80°∴∠OAE=40°∵CE是角平分线∴∠BCE=45°∴∠BEC=45°∴∠ACE=45°-40°=5°(2)∵∠ACE=1

如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.

∵矩形ABCD,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=4cm,∴AC=BD=2×4cm=8cm,答:矩形对角线的长是8cm

如图 直线AB,CD相交于点O,OM⊥AB于点o.

(1)若∠1=∠2∠1+∠AOC=∠2+∠AOC=90度看不清楚图.但是公共角+∠1或∠2=90度∠NOD=90度(2)∠BOC=4∠13∠1=90度,∠1=30度∠AOC=90-30=60度∠MOD

如图,直线AB,CD相交于点O,OM⊥AB于点O.

给好评部再问:回答正确就采纳哈再答:因为角1等于1/5角BOC,所以角MOB等于4/5角BOC,所以角BOC等于5/4角BOC等于112.5°然后MOC等于22.5,然后180一剪再问:“所以角BOC

如图,直线AB、CD相交于点O,

设∠BOE=2X那么∠EOD=3X∵∠AOC与∠BOD是对顶角∴∠AOC=∠BOD又∠BOD=∠BOE+∠EOD则80°=2X+3X∴X=16°又∠AOD+∠AOC=180°∴∠AOD=180°-∠A

如图矩形ABCD的对角线AC、BD相交于O,已知∠AOD=120°,AB=4,求矩形ABCD的面积.

∵四边形ABCD是矩形,∴AO=DO,AD∥BC,∵∠AOD=120°,∴∠DAC=30°,∴∠ACB=30°,∵AB=4,∴AC=2AB=8,∴BC=82-42=43,∴矩形ABCD的面积:4×43

如图,矩形ABCD,AB=6,AD=8,对角线AC与BD相交于点O,AE垂直于BD

(1)矩形ABCD,AB=6,AD=8,对角线AC与BD相交于点O,AE垂直于BDBD=10,AB*AD=BD*AEAE=24/5(2)BE=EO=1/4=5/2tan∠ABD=AE/BE=48/25

如图;已知AB、CD相交于O,OE平分

因为OE垂直于OF,所以角EOF=90度,即