如图,三角尺的两直角边的长分别为a.b,中间圆孔的半径为r,则阴影部分的面积是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:35:42
由题意得(1)∵AC=,CO=1,∴AO=(5)2-12=2,∴A(0,2),做BF⊥OC,∵BC=AC,∠AOC=∠BFC,∠CAO=∠BCF,∴△BFC≌△COA,∴CF=AO=2,∴B(-3,1
1.PC=PD证明:作PE⊥OA于点E,PF⊥OB于点F∵OM是角平分线∴PE=PF∠EPF=90°∵∠CPD=90°∴∠CPE=∠DPF∵∠PEC=∠PFD=90°∴△PCE≌△PDF∴PC=PD2
)①由(1)的结论易得∠ABX+∠ACX=90°-50°=40°;②由(1)的结论易得∠DBE=∠A+∠D+∠E,易得∠D+∠E=80°;而∠DCE=12(∠D+∠E)+∠A,代入∠DAE=50°,∠
如图3作PE、PF分别⊥OA、OB(即P点到两边的距离)得PE=PF(角平分线上一点到两边的距离相等)且∠EOF=90°,又∵∠CPD=90°即相当于,绕P点将∠CPD逆时针旋转一个角度(图中90,笔
得到一个以12厘米为底面半径,高是8厘米的圆锥,体积是:1/3*π*12*12*12*8=4608π
(1)当点P运动到∠ABC得平分线上时,连接DP,求DP的长.求DP解法一:由题意,在Rt△ABC中,∠ABC=60°,AB=2√3,由sin∠ABC=AC/AB得:AC=AB×sin∠ABC=2√3
证明:(1)过点P作PM⊥OA于M,PN⊥OB于N.又∵P为∠AOB的平分线OC上的任意一点,∴PM=PN.又知∠MPN=∠EPF=90°,故∠EPM=∠FPN=90°-∠EPN,在△PM
在三角形ABC中,1=2,三=四,所以∠EPC=3n°时,PE=PF
答:(1)不一定相等,因为只有当PC⊥OA时(此时PD也会同时⊥OB),线段PC才与PD相等.(角的平分线上的点到角的两边距离相等)否则PC≠PD.(2)若PC=PD,OM也不一定是角AOB的角平分线
1)∠CBX+∠BCX=90°∠B+∠C=180°-70°=110°∠ABX+∠ACX=∠B+∠C-(∠CBX+∠BCX)=20°2)若X在△ABC的左侧∠CBX+∠BCX=90°∠B+∠C=180°
(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠D=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=130°-90°=40°.故∠ABD+∠ACD为40°;(2)如图所示.∵∠A
过点P作PM⊥OA于M,PN⊥OB于N,∴∠PME=∠PNF=90°,∵∠AOB=90°,∴四边形PMON是矩形,∴∠MPN=90°.∵∠EPF=90°,∴∠MPN=∠EPF,∴∠MPE-∠MPN=∠
证明:连接AD,∵在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,∴AD=BD,∠B=∠C=∠CAD=∠BAD=45°,AD⊥BC,∴∠ADB=∠EDF=90°,∴∠ADF=∠EDB=90
PC=PD过P分别作PE⊥OB于E,PF⊥OA于F,由角平分线的性质易得PE=PF,然后由同角的余角相等证明∠1=∠2,即可由ASA证明△CFP≌△DEP,从而得证.PC=PD过P分别作PE⊥OB于E
PC=PD过P分别作PE⊥OB于E,PF⊥OA于F,由角平分线的性质易得PE=PF,然后由同角的余角相等证明∠1=∠2,即可由ASA证明△CFP≌△DEP,从而得证.PC=PD过P分别作PE⊥OB于E
你这问题没写完啊这咋整
①可以找出△BAE≌△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90°+∠CAE.②由①可得出∠DCA=∠ABC=45°,则∠BCD=90°,所以DC⊥BE.①∵△ABC,△DAE是等
(1)连接PC.∵△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=1/2∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,∴
1.∵∠AOB=∠COD=90°,∠AOC+∠BOC=∠AOB,∠BOC+∠DOB=∠COD∴∠AOC=∠BOD又∵∠DOB:∠DOA=2:11,∠DOA=∠AOC+∠DOB+∠BOC∴∠BOC:∠D
再问:不懂啊再问:你用文字说一遍,谢谢。再答:把图画出来,就是我画的那个。以八厘米为轴旋转一圈就会得到一个半径12,高8的圆锥。圆锥的体积公式你应该懂,朝里面带入数字就好了啊