如图,三角尺的两直角边的长分别为a.b,中间圆孔的半径为r,则阴影部分的面积是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:35:42
如图,三角尺的两直角边的长分别为a.b,中间圆孔的半径为r,则阴影部分的面积是
如图,在平面直角坐标系中,将一块腰长为5的等腰直角三角尺ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1

由题意得(1)∵AC=,CO=1,∴AO=(5)2-12=2,∴A(0,2),做BF⊥OC,∵BC=AC,∠AOC=∠BFC,∠CAO=∠BCF,∴△BFC≌△COA,∴CF=AO=2,∴B(-3,1

难难难.如图1,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C

1.PC=PD证明:作PE⊥OA于点E,PF⊥OB于点F∵OM是角平分线∴PE=PF∠EPF=90°∵∠CPD=90°∴∠CPE=∠DPF∵∠PEC=∠PFD=90°∴△PCE≌△PDF∴PC=PD2

如图,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好分别经过点B、C,若∠A=50°,则∠AB

)①由(1)的结论易得∠ABX+∠ACX=90°-50°=40°;②由(1)的结论易得∠DBE=∠A+∠D+∠E,易得∠D+∠E=80°;而∠DCE=12(∠D+∠E)+∠A,代入∠DAE=50°,∠

如图,∠AOB=90,OE是∠AOB的平分线,将三角尺的直角顶点P在射线OE上滑动两直角边分别与OA,OB交于点CD.

如图3作PE、PF分别⊥OA、OB(即P点到两边的距离)得PE=PF(角平分线上一点到两边的距离相等)且∠EOF=90°,又∵∠CPD=90°即相当于,绕P点将∠CPD逆时针旋转一个角度(图中90,笔

一把三角尺,两条直角边长分别为12厘米,8厘米,以长8厘米的边为轴旋转一周求所得几何体的体积

得到一个以12厘米为底面半径,高是8厘米的圆锥,体积是:1/3*π*12*12*12*8=4608π

将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=

(1)当点P运动到∠ABC得平分线上时,连接DP,求DP的长.求DP解法一:由题意,在Rt△ABC中,∠ABC=60°,AB=2√3,由sin∠ABC=AC/AB得:AC=AB×sin∠ABC=2√3

如图,∠AOB=90°,将一块足够大的三角尺的直角顶点落在∠AOB的平分线OC的任意一点P上,使三角尺的两条直角边与∠A

 证明:(1)过点P作PM⊥OA于M,PN⊥OB于N.又∵P为∠AOB的平分线OC上的任意一点,∴PM=PN.又知∠MPN=∠EPF=90°,故∠EPM=∠FPN=90°-∠EPN,在△PM

如图,角AOB=90度,OM为角AOB内的一条射线,将一块直角三角尺的直角顶点P,在射线OM上移动,两直角边分别为OA,

答:(1)不一定相等,因为只有当PC⊥OA时(此时PD也会同时⊥OB),线段PC才与PD相等.(角的平分线上的点到角的两边距离相等)否则PC≠PD.(2)若PC=PD,OM也不一定是角AOB的角平分线

如图,把一块三角尺XYZ放置△ABC上,(1)如图(1),若∠A=70°,且三角尺的两条直角边XY,XZ恰好分别

1)∠CBX+∠BCX=90°∠B+∠C=180°-70°=110°∠ABX+∠ACX=∠B+∠C-(∠CBX+∠BCX)=20°2)若X在△ABC的左侧∠CBX+∠BCX=90°∠B+∠C=180°

有一块直角三角尺DEF,放在△ABC上,如图,△DEF的两条直角边DE、DF分别经过B、C两点,在△ABC中,∠A=50

(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠D=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=130°-90°=40°.故∠ABD+∠ACD为40°;(2)如图所示.∵∠A

如图,∠AOB=90°,将三角尺的直角顶点落在∠AOB的平分线OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分

过点P作PM⊥OA于M,PN⊥OB于N,∴∠PME=∠PNF=90°,∵∠AOB=90°,∴四边形PMON是矩形,∴∠MPN=90°.∵∠EPF=90°,∴∠MPN=∠EPF,∴∠MPE-∠MPN=∠

如图,已知Rt△ABC中,AB=AC,D是斜边BC的中点,将直角三角尺的直角顶点置于点D,两直角边分别与AB,AC交于点

证明:连接AD,∵在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,∴AD=BD,∠B=∠C=∠CAD=∠BAD=45°,AD⊥BC,∴∠ADB=∠EDF=90°,∴∠ADF=∠EDB=90

如图,∠AOB=90°,OE是∠AOB的平分线,将三角尺的直角顶点P在射线OE上滑动,两直角边分别与OA.OB交于点C.

PC=PD过P分别作PE⊥OB于E,PF⊥OA于F,由角平分线的性质易得PE=PF,然后由同角的余角相等证明∠1=∠2,即可由ASA证明△CFP≌△DEP,从而得证.PC=PD过P分别作PE⊥OB于E

如图,∠AOB=90°,OE是∠AOB的平分线,将三角尺的直角顶点P在射线OE上滑动,两直角边分别与OA,OB交与点CD

PC=PD过P分别作PE⊥OB于E,PF⊥OA于F,由角平分线的性质易得PE=PF,然后由同角的余角相等证明∠1=∠2,即可由ASA证明△CFP≌△DEP,从而得证.PC=PD过P分别作PE⊥OB于E

如图:在△ABC中,∠C=90°,CA=CB=6,把三角尺的直角顶点P放在边AC上移动,两条直角边分别交边AB于点Q、边

①可以找出△BAE≌△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90°+∠CAE.②由①可得出∠DCA=∠ABC=45°,则∠BCD=90°,所以DC⊥BE.①∵△ABC,△DAE是等

如图,在△ABC中,AC=BC=2,∠C=90°,将一把三角尺的直角顶点放在斜边AB的中点P处,三角尺的两直角边分别交△

(1)连接PC.∵△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=1/2∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,∴

如图,将一副三角尺的直角顶点重合在一起

1.∵∠AOB=∠COD=90°,∠AOC+∠BOC=∠AOB,∠BOC+∠DOB=∠COD∴∠AOC=∠BOD又∵∠DOB:∠DOA=2:11,∠DOA=∠AOC+∠DOB+∠BOC∴∠BOC:∠D

一把三角尺,两条直角边长分别为12厘米8厘米以长8 厘米的边长为轴旋转一周求所得几何体的体积.

再问:不懂啊再问:你用文字说一遍,谢谢。再答:把图画出来,就是我画的那个。以八厘米为轴旋转一圈就会得到一个半径12,高8的圆锥。圆锥的体积公式你应该懂,朝里面带入数字就好了啊