如图,三角形ABC为正三角形,D.E分别是AC.AB上的点,角BDE=60°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:22:00
过D作DH‖BC交AB于H,设BC=1,∴AB=2,AC=AD=√3,由∠BAC+∠BAE=90°,∴DH‖AE.(1)由DH⊥AC,∴BH=AH=1由AH=1,AD=√3,∠BAD=90°,∴DH=
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
证明1:由题意可知,在平面ACC1A1上,直线AF∥直线C1F1,且直线AF=直线C1F1,所以四边形AFC1F1为平行四边形,即直线AF1∥直线FC1,所以直线FC1∥平面AF1B1同理,在平面F1
(1)利用三角形的全等即可证明.DC=AC∠DCB=∠ACEBC=EC△DBC≌△AEC(SAS)所以可证AE=BD(2)证明:∵⊿ACD和⊿BCE都是等边三角形∴AC=DC,BC=EC,∠ACD=∠
以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 
BM+CN=MN.证明:BD=CD,∠BDC=120°,则∠DBC=∠DCB=30°,∠DBA=∠DCA=90°.延长AC到P,CP=BM,连接DP,则⊿DCP≌⊿DBM,DP=DM;∠PDC=∠MD
△ECH,△GFH,△GAD均与△DBE相似,任选一对即可.如选△GAD证明如下:证明:∵△ABC与△EFD均为等边三角形,∴∠A=∠B=60°又∵∠BDG=∠A+∠AGD,即∠BDE+60°=∠AG
角AGD=角FGH,角GFH=角DAG=60度,所以角GHF=角ADG即ADG与GFH相似又角ADG+角BDE=120度,角FGH+角GHF=120,所以角BDE=FGH即证明了BDE与AGD,GFH
连接BN,CM∵等边△ACN,等边△ABM∴AB=AM,AC=AN∠CAN=∠BAM=60°∴∠CAN+∠BAC=∠BAM+∠BAC即∠BAN=∠CAM∴△BAN≌△MAC∴BN=CM又∵BN=2EF
由△ABC是正三角形,BE是∠ABC外角的平分线,∴∠A=∠CBE=60°(1)由∠DBE=60+60=120°,∴∠BDE+∠BED=60°,由∠CDE=60°∴∠ADC+∠BDE=120°又∠AD
http://zhidao.baidu.com/question/466261225.html
正弦定理a/sinA=2R(R为外接圆的半径)边长为aa=2R*sin60°=√3*R边心距d是外接圆半径的一半d=R/2周长=3√3*R面积S=3*边长*边心距/2=3√3*R^2/4
考查△FEC和△ABC,由题意知FC=AC,EC=BC,∠FCE=∠ACB=60°-∠ECA,所以△FEC≌△ABC,FE=AB=AD.同理可证△DBE≌△ABC,得DE=AC=AF.在四边形DAFE
1.P为AC中点时,△PDC为正三角形,△PBC为直角三角形PB=√3·PC=√3·a/2PD=a/2△PBD周长L=PB+PD+BD=a+√3·a/22.作点B关于AC对称的点B',连DB'交AC于
稍等再答:证明:∵正△ABM,正△CAN∴AB=AM,AC=AN,∠BAM=∠CAN=60∵∠BAN=∠BAC+∠CAN,∠MAC=∠BAC+∠BAM∴∠BAN=∠MAC∴△ABN≌△AMC(SAS)
首先,冒昧的问下,你的图在哪里?好吧.我盲解.现在我就认为你的D在AB边上,E在BC边上,F在AC边上.分析下,题目中给的两个数字,3和根号3.非常有意思!在初中数学中看见根号3或者根号3的倍数时脑袋
AD=BD+DC才对!SAS全等即可!
因为三角形ABC是正三角形所以角B=角C在三角形DFC、三角形EDB中:DC=EB角B=角CCF=BD所以三角形DFC全等于三角形EDB(SAS)所以角EDB=角DFC,角BED=角CDF所以角EDC
题目中应该是:-------------------------------∠EDF=60º证明:BD=DC,∠BDC=120º,则∠DBC=∠DCB=30°;又∠ABC=∠ACB
利用AB分别在C点产生的电场,然后矢量相加