如图,以△ABC的边AC.AB为一边,分别向三角形的外侧做正方形ACF,S△
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:36:40
显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.
(1)∵∠DAC=∠DAB+∠BAC∠BAE=∠CAE+∠BAC又∵∠DAB=∠CAE∴∠DAC=∠BAE∵AD=AB,AC=AE所以:△DAC≌△BAE(SAS)(2)由于△DAC≌△BAE有BE=
因为三角形BCF和三角形ACE是等边三角形所以角BCF=角ACE=60度又因为角BCF=角BCA+角ACF,角ACE=角FCE+角ACF所以角BCA=角ECF(1)因为三角形BCF和三角形ACE是等边
三角形ABD,ACE为等边三角形则AB=AD,AE=AC,角CAD=角BAE,三角形ABE与三角形ADC全等,则BE=CD
∵AB=AC∴∠ABC=∠C=2∠A∵∠ABC+∠A+∠C=180°∴5∠A=180°∠A=36°∠ABC=∠C=23A=72°∵BC是圆的切线∴∠CBD=∠B=36°∴∠ABD=∠ABC-∠CBD=
证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,即AD是底边BC上的高又∵AB=AC,∴△ABC是等腰三角形,∴D是BC的中点;(2)∵∠CBE与∠CAD是DE所对的圆周角,∴∠CBE=∠CAD,
(1)证明:连接AP,OP,∵AB=AC,∴∠C=∠B,又∵OP=OB,∠OPB=∠B,∴∠C=∠OPB,∴OP∥AD;又∵PD⊥AC于D,∴∠ADP=90°,∴∠DPO=90°,∵以AB为直径的⊙O
(1)证明:连接AD,∵AB是直径,∴AD⊥BC,又∵BD=DE,∴∠BAD=∠EAD,而AD=AD,∴△ABD≌△ACE,∴AB=AC,即△ABC是等腰三角形;(2)∵AD⊥BC,即△ADC为直角三
①若四边形ADFE为矩形时,∠BAC=360-2x60-90=150度.②若平行四边形ADFE不存在,则D,A,E在一条直线上,∠BAC=180-2x60=60度③若平行四边形ADFE是菱形,则AD=
证明:(1)连接AD.∵AB是⊙O的直径,∴AD⊥BC,又BD=CD,∴AB=AC.(2)连接OD.∵OA=OB,BD=CD,∴OD∥AC.又DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.
证明:连接AD.∵AB是直径∴∠ADB=90°∴AD⊥BC∴∠BAD=∠CAD∴BD=DE.
(1)∵MN为AC边的中垂线∴DC=AD∴三角形BDC的周长=DC+BC+BD=AD+DB+BC=AB+BC=14(2)∵△BDC周长为20,BC=8∴AB=20-8=12(参考上一问)
(1)当角BAC=90,M是BC的中点,AM=BM=MC=BC/2角EAD=90°=角BAC,AE=AB,AC=AD三角形ABC全等三角形AEDED=BC所以ED=2AM
(2)、∠AOD=∠AOE证明:过点D作AF⊥CD,AG⊥BE垂足为F,G先证:△ADC≌△ABE(SAS)得:AF=AG(全等三角形对应边上的高相等)也可由面积法得到这个结论∴AO平分∠DOE(角平
如右图所示,连接OD、AD.∵AB是直径,∴∠BDA=∠CDA=90°,又∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴∠ODE=∠CED=90°,
连接OE,OD,AD, ∵AB为圆O的直径,∴∠ADB=90°,又AB=AC,∴AD为∠BAC的平分线,即∠BAD=∠CAD又圆心角∠BOD与圆周角∠BAD都对BD弧又圆心角∠EOD与圆周角
(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D
∵三角形ABD和三角形ACE是等边三角形∴AD=ABAC=AE角DAB=角CAE=60°所以角DAC=角BAE在△DAC和△BAE中AD=AB角DAC=角BAEAC=AE△DAC≌△BAE(SAS)∴
(1)连接OP,AP.∵AB是⊙O的直径,∴∠APB=90°.∴∠APC=90°.∵Q为AC的中点∴PQ=AQ=QC.(1分)∴∠PAQ=∠APQ∵OA=OP,∴∠OAP=∠OPA∴∠PAQ+∠OAP