如图,以△abc的边bc为直径的圆o交ac于点d,过点d作圆o的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:55:15
(1)证明:∵BC是直径,∴∠BAC=90°.∵ME⊥BC,∴∠BEM=90°.∴∠BAC=∠BEM.∵BM平分∠ABC,∴∠ABM=∠EBM.∴∠AMB=∠EMB,AM=EM.∵BM是公共边,∴△A
连接OD,得OD⊥DE,得OD‖ACOD=OB(半径相等),得∠DBO=∠BDO由于OD‖AC,得∠ACB=∠DOB=∠OBD得三角形DBO三内角相等,为等边三角形∠BDO=∠BAC因此,三角形ABC
答:BC与半圆O的位置关系为相切,证明:过圆心O作OG⊥BC于G,∵E,F是AB,AC的中点,∴EF∥BC,EF=12BC,设EF与AD交于点H,F为AC的中点,作FH∥BC,交AD于H,∴FH是△A
连接oe,af两个相似的直角三角形立现,oc=3,oe=1,算出ec,问题就解决了
(1)证明:连接AD,∵AB是直径,∴AD⊥BC,又∵BD=DE,∴∠BAD=∠EAD,而AD=AD,∴△ABD≌△ACE,∴AB=AC,即△ABC是等腰三角形;(2)∵AD⊥BC,即△ADC为直角三
证明:(1)连接AD.∵AB是⊙O的直径,∴AD⊥BC,又BD=CD,∴AB=AC.(2)连接OD.∵OA=OB,BD=CD,∴OD∥AC.又DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.
(1)证明:过O作OM⊥BC于M,则CM=BM;∵AD⊥BC,EF⊥BC,OM⊥BC,∴AD∥OM∥EF,又∵OA=OE,∴DM=MF,故CM-DM=BM-MF,即BF=CD.(2)连接BE,则∠AB
1)连接OD,可得OD⊥BC.∴OD//AC,∠ADO=∠2∵OD=OA∴∠ADO=∠1∴∠1=∠2∴AD平分∠BAC2)∵⊿ODB是直角三角形,OE=OD.∴OD²+BD²=OB
连接BE,则BE⊥AC.∴BE2=AB2-AE2=82-22=60.设FC=x,则BF=5x,BC=6x.∵∠EFB=∠CEB,∠EBF=∠CBE,∴△BEF∽△BCE,∴BFBE=BEBC,∴BE2
1)连接CD∵在圆O中,BC为直径∴∠BDC=90°∵BC=AC∴∠A=∠B∵DO=BO∴等腰三角形ABC∵CD⊥AB∴D是AB中电(三线合一)2)∵∠CDO=∠DCO又∠DCO=∠DCE∴∠CDO=
证明:连接ED、FD,△ABD与△AED为相似三角形,△ADC与△ADF为相似三角形则有AD/AC=AF/AD,推出AD²=AC.AF,AD/AB=AE/AD,推出AD²=AB.A
第一个问题∵BC为直径,D为圆上一点∴△BCD为直角三角形(直径所对圆周角为直角~这个结论应该是可以直接用的~毕业太久不记得了哈~)∵∠ACD=∠ABC且∠CDB=∠CDA=90°∴∠CAD=∠BCD
BC=AC.证明:连接OE.∵EF是圆的切线,∴OE⊥EF,又∵EF⊥AC∴OE∥AC,∵OC=OB,∴OE是△ABC的中位线,∴AC=2OE,又∵BC=2OE,∴BC=AC.
1、证明:连接CE∵直径BC∴∠BEC=90∴∠ACE+∠CME=90∵AD⊥BE∴∠CAD+∠AMB=90∵∠CME=∠ANB∴∠ACE=∠CAD∵∠ACE、∠FBE所对应圆弧都为劣弧EF∴∠ACE
以AB为直径的半圆?请在检查下你的问题.
连接BD,由圆得出角ADB=90度,由于AB=BC,BD垂直于AC,得出AD=CD,在利用中位线定理得出BD=AD=CD由E是BC的中点,加上BD=CD,得出DE垂直于BC则在直角三角形CDE中,DE
如图:连接BM,由圆内接四边形的性质可知,∠CNM=∠CAB,∠CMN=∠CBA,∴△CNM∽△CAB,又△ABC的面积是△CMN面积的4倍,可知相似比CMCB=12,AB为直径,∠BMC=90°,则
(1)连接OP,AP.∵AB是⊙O的直径,∴∠APB=90°.∴∠APC=90°.∵Q为AC的中点∴PQ=AQ=QC.(1分)∴∠PAQ=∠APQ∵OA=OP,∴∠OAP=∠OPA∴∠PAQ+∠OAP