如图,以三角形的一边ab为直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:11:08
设在圆弧上的点为A点,直径两端点分别为B、C点,从A向BC作垂线AD,由圆和三角形相似的性质可以得到向量AD*向量AD=-向量BD*向量CD.向量BA=向量BD+向量DA,向量CA=向量CD+向量DA
证明:(1)连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°-∠C=30°,(2分)∴∠FDO=180
(1)因为D在圆周上,所以∠ADB=90°,所以AD垂直BC于D点,且AB=AC,所以D为bc中点(2)连接圆心O与D,因为OD=AO=BO=2,且DE⊥AB,DE=1,所以BD=2,DE根号3再问:
连接OD,得OD⊥DE,得OD‖ACOD=OB(半径相等),得∠DBO=∠BDO由于OD‖AC,得∠ACB=∠DOB=∠OBD得三角形DBO三内角相等,为等边三角形∠BDO=∠BAC因此,三角形ABC
连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC
(1)连接CE∵∠C=90°、AE=BE∴CE=AE又∵DA=DC∴DE是AC的垂直平分线∴DE∥CB(2)AC=√3BC当AC=√3BC时,∠B=60°∵∠ACD=60°∴∠ACD=∠B∴BE∥CD
按图形,ΔACE是等边三角形.证明:∵ΔACE、ΔBCF为等边三角形,∴CB=CF,CA=CE,∠BCF=∠ACE=60°,∴∠BCF+∠ACF=∠ACE+∠ACF,即∠BCA=∠FCE,∴ΔBCA≌
∵AC=8BC=6∴AB=10CG/CB=CA/ABh=CG=(8/10)*6=24/5DN=x则AD=(4/3)xEB=(3/4)xDE=10-(4/3)x-(3/4)x=10-(25/12)xDE
看不到图,只能按照自己理解的图给你解答了:1.连接0d,因为bo=1/2babd=1/2bc角b共用,可知三角形bod和bac相似,从而角bdo=角c由此可得od和ac平行de是切线,od是半径则两者
1)连AE,因为AB为直径所以∠AEB=90因为AB=AC所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)因为∠CBF=(1/2)∠BAC所以∠CBF=∠BAE因为∠BAE∠ABE=90所以∠A
﹙1﹚∠A=50°∠B=90°50=40°∠ODB=∠B=40°∴∠BOD=180°-40°×2=100°﹙2﹚连接BD∵AB是⊙O的直径,点E在⊙O上,∴∠AEB=90°∵D、F分别是BC和CE的中
利用相似比来证明嘛,DE//BC就有AE/AC=DE/BCGF//BC就有HF/HC=GF/BC因为DE=GF所以AE/AC=HF/HC就得到AH//EF
证明:设这里的切线交AC于F,并设半圆的圆心是O依题意,EF垂直于ACOE也垂直于AC(切线)所以,EF平行于OE因为O是BC的中点所以OE是三角形ABC的中位线所以OE=1/2ACOE=1/2BC(
1连接OD,OE,那么OD=OE=½BC∴OD=OE=DE=BO=OC∴三角形ODE是等边三角形,三角形BOD和COE是等腰三角形∴∠DOE≡60°∠DBO=∠BDO∠C=∠OEC∴∠B
解题思路:切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解题过程:
第一问,连接AD,得角BDA=90度,又三角形ABC为等腰三角形,根据三线合一得AD平分BC,D为BC中点;第二问:DE为圆的切线理由如下:连接DO,DO为三角形ABC的中位线,DO与AC平行,角DE
2)AD=DC=AO=2=BC/2DF=CD*sinC=√33)CF=EF=1/2CD=1S三角形DEF=1/2*DF*EF=√3/2
AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边
S(阴影)=1/2*π*(1/2AC)^2+1/2*π(1/2BC)^2+S(三角形ABC)-1/2*π*(1/2AB)^2=1/8*π*(AC^2+BC^2-AB^2)+S(三角形ABC)而AC^2
这道题目必须讨论:1)当弧AB为圆周1/3(即弧AB为120度)时:这样的等腰三角形只能作两个:可作线段AB的垂直平分线,与圆的两个交点分别为C,D.则三角形ABC与三角形ABD均为等腰三角形.2)当