如图,以三角形的边ab为直径的圆o交ac边于点d,且过点d的圆o的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:08:19
半圆半径为R1/2兀*R^2=9/2兀R^2=9R=3AB=2R=6BC为边的正方形为16BC^2=16BC=4AC^2=2^2*13=52BC^2=16AB^2=6^2=36BC^2+AB^2=52
∵半圆面积为9分之2π,∴圆面积为9π.∵圆的面积是πr²,∴9=3²,AB=6∵正方形面积为16,∴CB=根号16=4.∵a²+b²=4²+6
(1)因为D在圆周上,所以∠ADB=90°,所以AD垂直BC于D点,且AB=AC,所以D为bc中点(2)连接圆心O与D,因为OD=AO=BO=2,且DE⊥AB,DE=1,所以BD=2,DE根号3再问:
连接OD,得OD⊥DE,得OD‖ACOD=OB(半径相等),得∠DBO=∠BDO由于OD‖AC,得∠ACB=∠DOB=∠OBD得三角形DBO三内角相等,为等边三角形∠BDO=∠BAC因此,三角形ABC
连接BM,CM∵BC为直径,AD⊥BC∴∠HDB=∠HEA=RT∠∴∠HBD=∠CAD又∠HDB=∠ADC=RT∠∴△ADC∽△BDH∴DB/DH=DA/DC,即DB*DC=DH*DA又∵BC为直径,
由勾股定理知,AB平方=AC平方+BC平方=12平方+5平方=169.以AB为直径的半圆面积是:169派/8.
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
连接BE,BC是直径===>角BEC=角BEA=90,勾股定理:BE^2=AB^2-AE^2根据射影定理:BE^2=BF*BC,所以:AB^2-AE^2=BF*BC,BF:FC=5:1==>BF=5B
1.连接OD,CDBC为圆O直径,∠BDC是BC所对的圆周角∴∠BDC=90°CD⊥AB,∠ADC=∠BDC=90°OD,OC都是圆O半径∴OD=OC于是,在等腰△OCD中,∠ODC=∠BCDDE切圆
1)连AE,因为AB为直径所以∠AEB=90因为AB=AC所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)因为∠CBF=(1/2)∠BAC所以∠CBF=∠BAE因为∠BAE∠ABE=90所以∠A
﹙1﹚∠A=50°∠B=90°50=40°∠ODB=∠B=40°∴∠BOD=180°-40°×2=100°﹙2﹚连接BD∵AB是⊙O的直径,点E在⊙O上,∴∠AEB=90°∵D、F分别是BC和CE的中
(1)连接OF∵CD是直径∴CD过O点∴CO=OF=1/2CD在RT△ABC中∵D是AB中点∴CD=AC=DB=1/2AB∴CO:CD=OF:DB=1/2又∵∠OFD=∠ODF=∠DBC∴OF//AB
证明:连接DF,可以判定角AFC=90°(直径CD所对应的圆周角为90度),所以角AFC=角C=90°.所以DF平行AC,又因为D为AB的中点,可以判定DF为三角形ABC的中位线,所以F为BC的中点.
1.证明:连接AD,AB为直径,则∠ADB=90°.即AD垂直BC;又BD=DC.故AB=AC.(线段垂直平分线上的点到线段两个端点距离相等).即三角形ABC为等腰三角形.2.连接BE,同理可证:BE
第一问,连接AD,得角BDA=90度,又三角形ABC为等腰三角形,根据三线合一得AD平分BC,D为BC中点;第二问:DE为圆的切线理由如下:连接DO,DO为三角形ABC的中位线,DO与AC平行,角DE
(1)连接DF因为DC是圆的直径,F在圆上所以角DFC=90度所以DF垂直BD所以三角形BDF相似于三角形BAC所以BF:BC=BD:BA因为D是AB中点所以F是BC中点(2)连接DE,GF按(1)的
证明:(1)连接DE、DF依题意可知,CD、EF为圆O的直径.有:∠ECF=∠CFD=∠FDE=∠DEF=90°且有CD=EF所以四边形ECFD为矩形,有DF=EC∠DFB=∠ECF=90°有因为点D
S(阴影)=1/2*π*(1/2AC)^2+1/2*π(1/2BC)^2+S(三角形ABC)-1/2*π*(1/2AB)^2=1/8*π*(AC^2+BC^2-AB^2)+S(三角形ABC)而AC^2
O为AB中点.OA=OB=OD=OE=R,所以∠OAD=∠ADO,∠OBE=∠BEO,又∠C=60°,所以∠OAD+∠OBE=120°,所以∠ADO+∠BEO=120°,∠BED+∠ADE=240°,
以BC为直径的圆O1与AC交于AC的中点D,∴BD⊥AC,AD=DC,∴BC=AB=4,BO1=2,DE⊥AB,BC⊥AB,设圆O2的半径为r,则O1O2=(2-r)√2=r+2,∴2√2-2=(√2