如图,四棱柱ABCD-A!B!C!D!,侧棱垂直地面,地面是直角梯形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:06:51
在正方形ABCD中,连接AC、BD,相交与点G,连接EG∵点E是PC的中点,点G是AC的中点∴EG∥PA∵EG为平面EDB上的线∴PA//平面EDB∵侧棱PD⊥底面ABCD∴PD⊥CD,PD⊥BC∵P
(1)由题意四边形A1B1CO为平行四边形,所以A1O平行B1C,所以A1O平行平面AB1C第二问我也不会
∵B1C1⊥ABB1A1.∴∠AB1P是得二面角A—B1C1—P的平面角.tan∠AB1A1=2,tan∠PB1A1=tan﹙∠AB1A1-30º﹚=﹙2-1/√3﹚/﹙1+2/√3﹚=5√
(Ⅰ)求证:C1D∥平面ABB1A1;(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;(Ⅲ)求二面角D-A1C1-A的余弦值(Ⅰ)证明:四棱柱ABCD-A1B1C1D1中,BB1∥CC1,又CC1&
CE=CC`=AA`=6,BC=AB=3√2,所以BE=3√2(直角三角形),所以∠BCE=45°,所以∠ECC`=45°,45°/360°=1/8(以点C为圆心,CC`为半径的圆中),所以曲面面积占
(I)连接AB1,∵AD∥B1C1且AD=B1C1∴ADC1B1是平行四边形∴C1D∥AB1又∵AB1包含于平面ABB1A1故C1D∥平面ABB1A1(II)连接B1D1交A1C1于O1,连接BD交A
连接CD1交C1D于M,连接EM由于E是BC的中点,M是CD1的中点故EM是三角形CBD1的中位线,故有EM∥BD1因为EM在平面C1DE内,BD1在平面C1DE外故有BD1∥平面C1DE
因为pd垂直abcd,所以bc垂直pcd,所以bc垂直de因为e为pc中点且pd等于dc,所以de垂直pc所以de垂直pbc所以bde垂直pbc请采纳答案,支持我一下.
(1)连接B'D'交A'C'于E,连接DE交BD'于F,连接BD∵A'D⊥面ABCD∴A'D⊥面A'B'C'D'
A三棱柱其实就是六边形切去一个四边形
⑴.如图,设A′O′⊥ABCD.则O′B=O′D.(∵A'B=A'D .设O为底之中心,AC,BD互相垂直平分与O,O′在AC上.从而OA⊥BD.A′O⊥BD(三垂线定理)∴
∵B1D1//BD,AC⊥B'D'∴AC⊥B'D'故只需要AC⊥B'D',即底面为对角线互相垂直的四边形.
(Ⅰ)证明:取BE1=CE,连接EE1和AE1∴EE1=BC,EE1∥BC,BC=AD,BC∥AD,∴EE1=AD,EE1∥AD.∴四边形AE1ED为平行四边形,∴AE1∥DE,在矩形A1ABB1中,
因为直棱柱所以CC'⊥面A'B'C'D'又因为B'D'属于面A'B'C'D'所以CC'⊥B'D'又因为B'D'⊥A'C'A'C'∩CC'=面A'C'C所以B'D'⊥面A'C'C.而A'C属于面ACC所
(1)AE的长为:AE=3a2,即点E为线段A1C1的中点.理由如下:连接A1B交AB1于点O,连接OE,则有OE∥BC1,又∵OE⊂平面AB1E,BC1⊄平面AB1E,∴BC1∥平面AB1E----
1,因为ABCD-A1B1C1D1是直棱柱所以dd1垂直于面A₁B₁C₁D₁和面ABCD,所以DD1⊥D1F,DD1⊥DE,因为EF‖CC₁
由正四棱柱得BDAC,BDAA1,推出BD面A1AC,A1CBD ,又A1B1面BB1C1C,BE得到BEA1B1,又BEB1C,BE面A1B1C,平面A1CB⊥平面BDE;;⑵ 试题分析:
M∈FH由题意HN∥面B1BDD1,FH∥面B1BDD1,∴面NHF∥面B1BDD1.∴当M在线段HF上运动时,有MN∥面B1BDD1.
(1).连接BD,交AC于M,∴M为BD中点∵平面EAC与正方形ABCD所成角为45°,平面EAC//D₁B∴D₁B与平面ABCD所成夹角为45°,即∠D₁BD=4