如图,四边形ABCD是圆的内接四边形,BC的延长线与AD的延长线交于E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:28:34
如图,四边形ABCD是圆的内接四边形,BC的延长线与AD的延长线交于E
如图,四边形ABCD内接于圆,AD,BC的延长线交于点E,F是BD延长线上任意一点,若AB=AC.

证明:(1)∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆,∴∠EDC=∠ABC,∵∠ADB=∠ACB,∠ADB=∠FDE,∴∠FDE=∠ACB=∠ABC,∴∠FDE=∠EDC,即DE平

已知,如图,四边形ABCD内接于圆,延长AD,BC相交于点E,点F是BD的延长线上的点,且DE

∵∠EDF=∠ADB,∠ADB=∠ACB,∴∠EDF=∠ACB∵∠ADC=180°-∠EDC=180°-∠EDF,∠ACE=180°-∠ACB∴∠ADC=∠ACE∴△ADE全等于△ACE∴AC/AE=

如图,四边形ABCD内接于圆O,BD是圆O的直径,AE垂直CD,垂足为E,DA平分角BDE.1.求证AE是圆O的切线

1、证明:连接OA∵AE⊥CD∴∠DAE+∠EDA=90∵DA平分∠BDE∴∠BDA=∠EDA∵OA=OD∴∠OAD=∠BDA∴∠OAD=∠EDA∴∠OAD+∠DAE=90∴∠OAE=90∴AE是圆O

如图,四边形ABCD内接于圆O,BD是直径,AE垂直CD,垂足为E,DA平分∠BDE,求证AE是圆O的切线

很简单因为DA评分∠BDE,所以∠BDA=∠EDA因为OD=OA,所以∠OAD=∠ODA所以∠OAD==∠EDA所以OA平行于ED因为AE垂直CD所以AE垂直OA所以AE是圆O的切线

如图,四边形ABCD内接于圆O,BD是直径,AE垂直CD,垂足为E,DA平分∠BDE

答:第二问:延长BA,CE,交于一点P因为DA=DA,角DAB=角DAP=90°,角ADB=角ADE(角平分线)所以三角形ADB和三角形ADP全等.所以AP=AB,即PB=2PA又BD是直径,所以角B

如图,四边形ABCD内接于圆o,BC是圆o的直径,AE垂直CD,垂足为E,DA平分角BDE.

你题没发完再问:再问:第2题再答:第一问可以求出90度第二问cd=ad圆里面两个都是直角三角行全等睡觉了拿手机在玩帮你看的没笔希望你弄得懂再问:恩,谢谢了

如图,四边形ABCD是圆0的内接正方形,点P为弧BC上一动点,求证;PA=PC+根号2乘PB

证明:在PA上取一点E,使AE=CP,连接BE.因为四边形ABCD是圆0的内接正方形所以,AB=CB,角BAE=角BCP,角ABC=90度所以,三角形BAE全等于三角形BCP所以,BE=BP,角ABE

如下图,已知四边形ABCD在平面α内的射影是一个平行四边形A1B1C1D1,求证:四边形ABCD是平行四边形

首先要限定四边形ABCD在同一个平面上,不是空间四边形.这题可以用反证法证明.投影的基本属性是:1)原来平行的直线的投影依旧是平行的.2)平面上两条不同的直线,投影也是不同的.从题目可知A1B1//C

如图,在圆O的内接四边形ABCD中.AB=1,BC=2,CD=3,DA=4.求:(1)AC的长.(2)四边形ABCD的面

四点共圆,所以∠B+∠D=180°,即∠D=180°-∠B由余弦定理:△ABC中,AC²=AB²+BC²-2×AB×BC×cosB△BCD中,AC²=AD

如图,已知四边形ABCD内接于圆,AD,BC的延长线交于E,BC=CE,C是弧BD的中点,求证:AB是圆的直径

连接BD∵C是弧BD的中点∴BC=CD∵BC=CE∴BC=CE=CD在△BDE中,CD是斜边BE的中线,且CD=½BE∴∠BDE=90°∴∠BDA=90°又∵A,B,D三点都在圆上∴AB是圆

如图,四边形ABCD是圆O的内接四边形,AC为直径,弧BD=弧AD,DE垂直于BC,垂足为E. (1)判断直线ED与圆O

解题思路:本题考察了切线的判定方法,及已知特殊线段的长度,得到三角形ODC是等边三角形,再结合扇形面积公式,等边三角形面积公式,求得阴影部分面积。解题过程:

已知,如图,四边形ABCD是菱形

(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1

如图,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点是P,AB=BD,且PC=0.6,

再答:请采纳哦~O(∩_∩)O再问:图不是很清楚再答:连接BO并延长交AD于H.∵△ABD是⊙O的内接三角形,∴OB平分∠ABD,∵AB=BD,O是圆心,∴BH⊥AD.又∵∠ADC=90°,∴BH∥C

如图,四边形ABCD内接于圆O,并且AD是圆O的直径,C是弧BD的中点,AB和CD的延长线交圆O外一点E.求证:BC=E

连接AC,BD,AD是圆O的直径,所以∠ACD=∠ABD=90度,∠ACE=∠EBD=90度,C是弧BD的中点,圆周角∠CAD=∠CAB=∠CDB=∠CBD,∠ADC=∠ACD-∠CAD=90度-∠C

如图,已知:四边形ABCD内接于圆,AD为直径...

因为∠ABC=124,所以∠ADC=56,又∠ACD=90,所以∠CAD=34,因为AC平分∠BAD,所以∠BAD=68,所以∠BCD=112.(内接于圆的四边形对角是互补的,直径所对的角为直角)

如图,四边形ABCD是圆O的内接四边形,AB=AD,∠BCD=120°.求证AC=BC+CD

,△ABD为等边三角形所以,∠BCA=∠BDA=60°在AC上截取一段CE=BC那么,△BCE也是等边三角形则,∠CBE=60°而,∠ABD=60°所以,∠CBE-∠DBE=∠ABD-∠DBE即,∠C

如图,已知四边形ABCD是圆O的内接四边形,∠BOD=100°,求∠BCD度数,若去掉∠BOD=100°这个条件,其他条

∵圆O中,弧AB=弧AB∴∠BAD=1/2∠BOD∵∠BOD=100°∴∠BAD=50°连接OC并延长,接圆O于E∵圆O中,弧AB=弧AB∴∠A=∠E∵E,C在圆O上,EC过O点∴∠EDC=∠EBC=

如图,已知四边形ABCD内接于直径为3的圆O

AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/