如图,四边行abcd是菱形,过ab的中点e作ac的垂线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:47:40
如图,四边行abcd是菱形,过ab的中点e作ac的垂线
如图在四棱锥P—ABCD中,底面ABCD是菱形,

1、取CD中点M,连结EM、BM,BD,△DAB是正△,DF⊥AB,BM⊥CD,DF//BM,EM//PD,PD∩DF=D,EM∩BM=M,面EMB//面PDF,BE∈面BEM,故BE//平面PDF.

已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于

1)连接BD,由菱形性质得BD⊥AC,∴BD‖ME,则易证△AME∽△ADB,∴AM:AD=AE:AB=1/2,∴M是AD中点,即AM=DM2)在△MDF与△MAE中,∠FMD=∠EMA,MD=MA,

八年纪的如图,以知顺次连接菱形ABCD四边的中点E、F、N、M得到四边形EFNM.求证四边形EFNM是矩形吗?

是证明:连接AC,BD∵ABCD是菱形∴AC⊥BD∵M是AD中点,E是AB中点∴ME平行BD,ME=1/2BD同理可得NF‖BD,NF=1/2BD所以四边形EFNM是平行四边形因为MN‖AC.AC⊥B

如图,E、F、G、H分别是空间四边形ABCD四边的中点,

将Ac和BD平移到一点其所成锐角为3o度此题可转化成EH和HG的夹角为30度

如图,已知ABCD是菱形,ABEF是矩形,且平面ABEF垂直于平面ABCD

证明:(1)∵ABCD是菱形∴AC⊥BD∵ABEF是矩形∴BE⊥AB∵平面ABEF⊥平面ABCD∴BE⊥平面ABCD根据三垂线定理AC⊥DE(2)连接CF取CE中点P,CF中点Q,AC中点O连接PQ,

已知如图四边形ABCD是菱形,过AB的中点E作EF垂直AC于点M,交AD于点F求证:AF=DF

在菱形ABCD中,AC垂直于BD.因为EF垂直于AC,所以EF平行于BD所以三角形AEF相似于三角形ABD所以AE与AB的比值等于AF与AD的比值所以AF等于DF

已知如图四边形abcd是菱形,过AB的中点E作EF垂直AC与点M,交AD于点F求证:AF=DF

因为BD与AC垂直EF也与AC垂直所以EF平行于BD因为E是AB中点所以F是AD中点所以AF=DF

如图,平行四边形ABCD中,AC平分∠BAD.求证:四边形ABCD是菱形.

证明:∵在平行四边形ABCD中,AB∥CD,∴∠DCA=∠BAC,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形.

1如图,已知四边形ABCD是菱形,点E,F分别是CD,AD的中点,求证AE=CF 2已知菱形ABCD中,BD是对角线,过

1、∵DA=DCDF=1/2ADDE=1/2DC∴DF=DE∵∠D=∠D∴⊿ADE≌⊿CDF∴AE=CF2、∵∠E=90°BD=2DE∴∠ABD=30°∵AB=AD=8∴∠ABD=∠ADB=30°∴∠

如图,过平行四边形ABCD对角线的交点o作两条互相垂直的直线EF,GH,分别与平行四边形ABCD的四边交于E,F,G,H

E在AD上,F在BC上,G在AB上,H在CD上因为ABCD是平行四边形所以OD=OB,角ODE=角OBE,因为EF与BD相交,所以角BOF=角DOE所以三角形DOE全等于三角形BOF所以OE=OF同理

已知,如图,四边形ABCD是菱形

(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1

如图,EFGH分别是菱形ABCD四边的中点,菱形ABCD的面积为4倍根号3,对角线AC=2倍根号2

BD=ABCD的面积/AC=(4√3)/(2√2)=√6连接EG得到△EGH的面积为平行四边形AEGD的1/2而△EGF的面积为平行四边形BEGC的1/2四边形EFGH的面积就为菱形ABCD面积的1/

如图,四边AEFD和四边形EBCF都是平行四边形.求证四边形ABCD是平行四边形

/>∵四边AEFD和四边形EBCF都是平行四边形∴AD∥EF,DF∥BCAD=EF,EF=CB∴AD∥BC,AD=BC∴四边形ABCD是平行四边形(一组对边相等互相平行的四边形是平行四边形)【数学辅导

如图,过四边形ABCD的各顶点作对角线BD,AC的平行线围成四边形EFGH,若四边形EFGH是菱形,则原四边形一定是(

填:对角线相等的四边形根据平行四边形的判定,可得四边形EFGH是平行四边形,又知它是菱形,则AC=BD所以只能推出一定是对角线相等的四边形

如图,在菱形ABCD中.

AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D

菱形ABCD,对角线AC与BD交于O,过点O向四边做垂线,垂足为E,F,G,H,说明EFGH是矩形

由菱形的性质知AC,BD为角平分线,又角平分线知OE=OF=OH=OG;由HL可证△OBE∽△ODG,得到∠BOE=∠DOG,所以∠BOE+∠EOD=∠DOG+∠EOD=180°故E,O,G共线,同理