如图,圆O中,直径AB于弦CD交与点P,角CAB等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:15:38
证明:连接AC ∵∠AOD=∠BOC ∴弧AD=弧BC ∵弦CE‖AB ∴∠BAC=∠ACE ∴弧BC=弧AE ∴弧AE=弧AD
过O作OE⊥CD,交CD于E∵直径AB=8∴OB=4∵P是OB中点∴OP=OB/2=4/2=2∵∠APC=30,OE⊥CD∴OE=OP×sin30=2×1/2=1∴CE²=OC²-
证明:∵AB是直径∴∠ACB=90°∴∠BAC+∠ABC=90°∵CD⊥AB∴∠BCD+∠ABC=90°∴∠BAC=∠BCD∵BC=CF∴∠BAC=∠CBF(等弦对等角)∴∠BCD=∠CBF∴BE=E
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,
(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠
联接BD,因为CD为直径,点b为圆上一点,所以DB垂直于BC,又因为AM垂直于BC,所以AM平行于BD,所以角MAB=角DBA,因为CD垂直于弦AB,所以AE=BE,又角AEC=角DEB(对顶角相等)
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=
连结cb因为bf平行于cd且ab垂直于cd所以cb=df所以弧cb=弧df因为cd是直径且垂直ab故c点评分弧ab所以弧ab=2弧cb=2弧df
(连接DE)记DE与⊙O的交点为G,∵DF=EF,∴∠FDE=∠FED,∠CFD=∠FDE+∠FED=2∠FDE,∵CD⊥AB,AB是直径,∴弧AC=弧AD,连接AF,则∠CFA=∠AFD,∠CFD=
因为MN过圆心,且经过AB中点,所以MN垂直于AB,所以MN垂直于CD,所以MN与CD交于CD的中点,因此F为CD中点.因为MN垂直于AB和CD,所以M,N为狐AB,CD的中点,即狐AM=BM,CN=
因为AB⊥CD,AM=½AC所以角MAC是30度连接CAOA则角AOD=角CAO+角ACO=60度所以AO=AM除以根号3再乘以2=2倍根号3(有一个角是30度的直角三角形中)所以CD=
OM平方+AM平方=OA平方AM平方=5*5-3*3=16AM=4AB=AM*2=4*2=8弦AB的长等于8.