如图,圆O为△ABC的内切圆,D.E.F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:49:11
如图,圆O为△ABC的内切圆,D.E.F
如图,已知三角形的周长为18,内切圆o的半径为1,求△ABC的面积

如图:将O点与ABC三点连接.得OAB、OBC、OCA三个三角形.以三边为底边,高均为圆的半径1.三角形ABC的面积:S=BC*1/2+CA*1/2+AB*1/2=(BC+CA+AB)*1/2=18*

如图,在Rt三角形ABC中,角C等于 90,AC=8.BC=6圆O为三角形ABC的内切圆

圆半径2,OG为根号5再问:怎么算←再答:圆半径等于(AC+BC-AC)/2再问:OG呢再答:三角形OGF中OF=2,FG=1,所以OG为根号5

如图,在△ABC中,∠C=90°,⊙O为它的内切圆,切点分别为E、F、D,斜边AB=10,△ABC的内切圆半径为1

∴△ABC的周长=AB+BC+AC=AB+(BD+CD)+(AE+CE)=AB+(BF+CE)+(AF+CE)=AB+(BF+AF)+2CE=AB+AB+2CE=10+10+2=22再问:∴△ABC的

如图,在RT△ABC中,∠C=90°,BC=a,AC=b,AB=c,圆O为RT△ABC的内切圆,求圆O的半径

设圆O的半径为r,则:S△OAB+S△OBC+S△OAC=S△ABC,即:cr/2+ar/2+br/2=ab/2,r(a+b+c)=ab,圆O的半径=ab/(a+b+c)

如图,在RT三角形abc中,∠c=90°,BC=3,AC=4,⊙o为RT三角形abc的内切圆(1)求RT△ABC的内切圆

确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动

如图,在边长为l的等边△ABC中,圆O1为△ABC的内切圆,圆O2与圆O1外切,且与AB,BC相切,…,圆On+1与圆O

(Ⅰ)证明:记rn为圆On的半径,则r1=l2tan30°=36l,rn−1−rnrn−1+rn=sin30°=12.所以rn=13rn−1(n≥2),于是a1=πr12=πl212,anan−1=(

如图,圆O是RT三角形ABC的内切圆,D,E,F为切点,若AD=6,CD=4,求内切圆的直径

D=4设半径BE=BF=X(4+X)平方+(6+X)平方=10平方一个解是22X=2*2=4

如图,圆O为△ABC的内切圆,且于AC,AB,BC分别相切于点D,E,F.

1)1/2*8*r=12得r=32)1/2*L*R=S连接AO、DO,CO,FO,BO,EO三角形ABC的面积=三角形AOB的面积+三角形AOC的面积+三角形COB的面积即S=1/2*AB*OE+1/

如图,已知圆o是边长为2的等边三角形ABC的内切圆,则圆O的面积

显然圆的半径=1/tan30=根号3于是面积为3π再问:说仔细点再答:⊙﹏⊙b汗开始比错了是π/3角BAC=60度因为等边三角形角EAB=30度且DE垂直AD(DE为内切圆半径)D为AB中点所以在直角

如图 ,圆o是三角形abc的内切圆,切点分别为d,f,e,AB=AC=13,BC=10.求园O的半

连接AD,勾股定理能算出来,BD=BE=5得出AE=8,设半径X,在直角三角形AOE中得出方程,解出半径再答:口算结果3分之10,方法就是这,结果没仔细算,你自己再好好算算再问:具体过程。。再答:AD

如图,在△ABC中,∠C=90°,⊙O为它的内切圆,切点分别为EFD,斜边AB=10,△ABC的内切圆半径为1求圆周长

解连接AO,BO,CO我们可以得到几组全等三角形AOF全等AOEBOF全等BODCOD全等COE所以AF=AEBF=BDOE=DC=OD=EC=1AF+BF=AB=10AE+EC+BD+DC=10+1

如图,圆O是Rt△ABC的内切圆,∠ACB=90°,AB=13,AC=12则图中阴影部分的面积为

三角形内切圆半径公式r=2S△/(AB+BC+AC)求得BC=5S△=AC·AB=12×5/2=30r=2故S阴=S△-πr²=30-12.56=17.44

如图,圆O是△ABC的内切圆,切点分别为D,E,F,已知△ABC的周长为18,BC=6,求AE的长.

∵圆O是三角形ABC的内切圆,切点是D,E,F(D在BC上,F在AB上、E在AC上)∴AF=AE,BD=BF,CD=CE,∴2AE=AF+AE=(AB-BF)+(AC-CE)=AB+AC-(BF+CE

急 已知如图△abc的周长为L,面积为S,内切圆圆心为O,半径为r,求证r=2s/L

1.边O与三个切点,O与三个顶点A,B,C形成三个三角形OAB,OACOBC他们的高都是rS=SOAB+SOAC+SOBCS=1/2(AB*r)+1/2(AC*r)+1/2(BC*r)r=2s/lr=

如图,在△ABC中,AB=AC=10,BC=12,圆O是三角形ABC的内切圆.求圆O的面积.

角形ABC是等腰三角形,底边上的高h=√100-36=8三角形ABC的面积为48设三角形的内切圆的半径为x那么内切圆圆心到三角形ABC三边的距离都是x于是,1/2AB*x+1/2AC*x+1/2BC*

如图,⊙O为正△ABC的内切圆,四边形EFGH为⊙O的内接正方形,且EF=根号2,求正三角形.

∵EFGH是正方形,且EF=√2∴正方形对角线=EG=FH=√[(√2)²+(√2)²]=2∵圆O是正方形EFGH的外接圆,又是正△ABC的内切圆∴圆直径=2,半径=1设AB切圆于

已知,如图,圆形O是等边三角形ABC的外接圆,且其内切圆的半径为2厘米,求△ABC的边长及扇形AOB的面积

等边三角形的外接圆半径为其内切圆半径的两倍,所以AO=4厘米AO延线交BC于D,则OD=2厘米.连接CO,设等边三角形的一边长为x,则CD=x/2.CD^2+OD^2=CO^2(x/2)^2+2^2=

如图在三角形abc中,角c等于90度,圆o是△abc的内切圆,切点分别为d、e、f.若bd=6,ad=4,求圆o的半径r

如图,D是斜边AB上的切点,连接OE和OF,不难证明OECF是正方形,依题意有AF=AD=4;BE=BD=6;CE=CF=r,据勾股定理得(4+r)²+(6+r)²=(4+6)&#

如图,已知圆O为等腰△ABC的内切圆,AB=AC,BC=2,D为BC与圆O相切的切点,现将该图形绕

连接AO、BO、CO∵圆O是△ABC的内切圆∴OD=OE=OF=r,OD⊥BC,OE⊥AC,OF⊥AB∴S△ABO=AB×OF/2=2×r/2=rS△ACO=AC×OE/2=3×r/2=3r/2S△B

如图,已知⊙O是边长为2的等边△ABC的内切圆,则⊙O的面积为 ___ .

设BC切⊙O于点D,连接OC、OD;∵CA、CB都与⊙O相切,∴∠OCD=∠OCA=30°;Rt△OCD中,CD=12BC=1,∠OCD=30°;∴OD=CD•tan30°=33;∴S⊙O=π(OD)