如图,圆O是三角形ABC的外切圆,且AB=AC,点D在弧BC上运动

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:23:42
如图,圆O是三角形ABC的外切圆,且AB=AC,点D在弧BC上运动
(只看图中实线部分,虚线和图上的文字忽略不看))如图BC与两圆都相切,两圆外切于点A,则称三角形ABC是切点三角形.求证

圆幂定理秒杀再问:圆幂定理我懂,但还是没有看出来怎么用,能否再详细点?

如图,在Rt三角形ABC中,角C=90度,AC=3,BC=4,有3个半径为R的等圆O1,O2 ,O3分别依次外切,且圆O

使圆与斜边AB有一公共点∴最短距离为点C与斜边AB垂直的距离过点C做CD⊥AB∵是rt三角形ABC∠C=90ºAC=3BC=4∴AB=5根据面积不变原理可得CD=12/5∵BC=4∴最远距离

如图,在三角形ABC中,AB=AC,cosB=3分之1,圆O是三角形ABC的内切圆,圆A与圆O外切.求rA与ro之比为2

证明:设AB切⊙O于点F,BC切⊙O于点E,连接AE,OF,∵AB=AC,⊙O是△ABC的内切圆,⊙A与⊙O外切,∴AE过点O,FO⊥AB,AE⊥BC,∵cosB=13,∴cosB=BEAB=FOAO

如图,已知圆O的直径AB=8,半径OC垂直AB,且OC是O1的直径,圆O2分别与圆O外切,与圆O1外切,与AB相切.

郭敦顒回答:(1)∵AB是⊙O的直径,半径OC⊥AB,且OC是⊙O₁的直径,∴⊙O₁与AB相切于O,⊙O₁与⊙O相切于C.(2)∵AB=8,⊙O₂分别与

如图,圆o是三角形ABC的内切圆,∠BOC=130°,求∠BAC的度数.

O是内切圆的圆心,也就是角平分线的交点所以∠BOC=90°+1/2∠A∵∠BOC=130°∴∠A=80°

如图,三角形ABC为等边三角形,点O是三角形ABC角平分线的交点.将三角形绕点O按逆时针方向旋转,分别画出旋转30

S△ABC=6×8×1/2=24因为O是三角形角平分线的交点所以OD=OE=OF(用角平分线上的点到交的两边距离相等得出,此结论无需写证明过程,可直接用)设OD为x则S△ABC=(AB×OF×1/2)

如图,三角形ABC外切于圆I,D E F是切点,证明角BIC和角FDE的关系

1.角BIC=180度-角IBC-角ICB=180度-1/2*(角ABC+角ACB)=180度-1/2*(180度-角A)=90度+1/2角A2.角FDE=180度-角FDB-角EDC=180度-(9

圆o的半径是R,求它的外切三角形,外切正方形和外切六边形的边长是多少?

外切正方形比较简单,正方形的边长就是圆O的直径2R;外切正三角形的边长可以用勾股定理算得是2√3R外切正六边形的边长同样可以用勾股定理算得是√4/3R

如图,A,B,C,D是圆O上的四点,三角形ABC与三角形DCB全等吗?为什么?

不一定全等.只有一边相等和边的对角相等.不满足全等条件.随便举个反例就行了

已知:如图,圆O是三角形ABC的外接圆,角ACO=30度.求角ABC的度数

角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)

如图,△ABC是大圆的内接三角形也是同心小圆的外切三角形

因为两圆同心,所以三角形ABC是等边三角形,则AB=4cm.连接OD,则OD丄AB,而AB是大圆的弦,所以D是AB的中点,则AD=AE=DE=2,因此,小圆半径OD=√3/3*AD=2√3/3cm,三

如图已知圆o是三角形abc的外接圆,若角a等于55度,则角boc等于多少度.

角boc=55*2=110度.同弧所对圆心角是圆周角的二倍.再问:能详细点吗==表示生病了-没去学校再答:顶点在圆心的角,叫做圆心角。圆心角α的取值范围是0°

如图,已知△ABC是○O的外切三角形,D,E,F为切点,设三角形周长为l,面积为S,内切圆半径为r,则S与l有怎样

S=L.R/2,你可以没BE=a,EC=b,AD=C,由内切圆定理可知:BD=a,CF=b,AF=c,则L=2(a+b+c),可求出a+b+c=L/2①,另外可求面积S=(a+b).r/2+(b+c)

如图,在△ABC中,AB=AC=10,BC=12,圆O是三角形ABC的内切圆.求圆O的面积.

角形ABC是等腰三角形,底边上的高h=√100-36=8三角形ABC的面积为48设三角形的内切圆的半径为x那么内切圆圆心到三角形ABC三边的距离都是x于是,1/2AB*x+1/2AC*x+1/2BC*

如图,三角形是圆O的内接三角形,AD是圆O的直径,AD=8,且角ABC=角CAD.

我们知道,在同圆或等圆中,同弧对应的圆周角相等,再结合已知条件∠CAD=∠ABC故有∠ADC=∠ABC=∠CAD,又AD是直径,所以△CAD是等腰直角三角形.∴∠ADC=∠CAD=45°弧AC长=8π

如图,三角形ABC是圆O的内接三角形,角A是30°,BC是2cm,求圆O的半径

连接OB,OC,所以;∠BOC=2∠A=60°,cos60°=(OB^2+OC^2-BC^2)/2OBOC,即(2r^2-4)/2r^2=1/2,r=2

如图 ,在三角形ABC中AC等于AB,点O是BC的中点,AC切圆O于D,求证:AB是圆O的切线

连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB

如图,圆O是三角形ABC的外接圆,CD是三角形ABC的高,AD等于3,BD等于8,CD等于6,求圆O直径

∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过

已知,在三角形ABC中,角C=90°,AC=4,BC=3.如图2,圆O1与圆O2是三角形ABC内互相外切的两个等圆,求这

(12-r)/20=2r/3r=36/37再问:为什么再答:O1O2C与BCA相似,O1O2/BC=O1C/ACO1O2=2rO1C=(4*3)/5-r=(12-5r)/5(12-5r)/20=2r/

如图,三角形ABC内接于圆O,点D是弧BC的中点,AE是三角形ABC的高求怔:AD平分角OAE

连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE