如图,圆O是以原点为圆心,根号2为半径的圆,点P是直线y=-x 6

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:39:55
如图,圆O是以原点为圆心,根号2为半径的圆,点P是直线y=-x 6
已知,如图,在平面直角坐标系中,点A的坐标为(0,2),点C为以坐标原点O为圆心,根号3为半径圆O上的一点,且AC=1,

注意到顶点横坐标为抛物线与X轴交点横坐标之和的一半,设顶点为P,与x轴交于M(m,0)、N(n,0)(a〉b).则有PM=PN,所以MN为斜边.又:MN=2,所以m=n+2在有,因为PM=PN,三角形

如图,在平面直角坐标系中,O为坐标原点,圆c的圆心坐标为(2,-2),半径为根号2,函数y=-x+2的图像与x轴交于点A

1,第一问很简单我就不说了,斜率之积是-1,CO⊥AB2,分两种讨论y=-x+2,令y=0,得A(2,0)令x=0,得B(0,2)点O到AB的距离为√2,所以OP∈[√2,2]当P在点B时,此时三角形

如图,在平面直角坐标系中,O为坐标原点,圆c的圆心坐标为(-2,-2),半径为根号2,函数y=-x+2的图像与x轴交于点

1,oc斜率是1,AB斜率是-1,所以垂直2,设p为(x,y),第一种情况:线段长度OP=OA,此时P和B重合第二种情况:线段长度OP=PA,此时P(1,1)第三种情况:线段长度AP=OA3,肯定有两

如图,圆O是以原点O为圆心,半径为根号2的圆,直线AB交坐标轴于A,B两点,OB=4,tan角BAO=2,P为直线AB上

1、不知道A在x轴上,还是y轴上我只能猜A在x轴上且在正半轴,B在y轴上了,且在正半轴.OB=4tan∠BAO=2则OA=2B坐标(0,4)A坐标(2,0)当角CPD=90度时,那么四边形CODP是正

如图,直线y=根号3x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交

直线,由此可以得出OB1=2OA1OB2=2OA2=2OB1=22OA1OB3=2OA3=2OB2=22OA2=22OB1=23OA1由此可以看出OBx=2OAx=2xOA1∴OAx=2x-1OA1O

已知圆O是以坐标原点为圆心,以1为半径的圆,直线L1过点A(3,0),且与圆O相切.

(2)设M(x0,y0),P'(3,y1),Q'(3,y2),易知,P(-1,0),Q(1,0).由M在圆上有:x0^2+y0^2=1,由P、M、P'三点共线,y1/4=y0/(x0+1),所以,y1

如图,在平面直角坐标系中,以原点O为圆心的⊙的半径为(根号2)-1,直线l:y=x-(根号2)与坐标轴…

1)点A的坐标可以通过令直线方程y=x-2^(1/2)中的y=0,来求得:为(2^(1/2),0);∠CAO的度数可从直线斜率来求得为45度,2)当圆B与圆O相切时,两圆的中心距为两圆半径之和,即2^

如图,在平面直角坐标系中,以坐标原点O为圆心2为半径画圆O,

如图,设∠COB=α,OB=2/cosα.OA=2/sinα.AB=OA×OB/OC=4/[2sinαcosα]=4/sin2α.当α=45°时,AB有最小值4.

在平面直角坐标系xOy中,O为坐标原点,以O为圆心的圆与直线x-根号3y-4=0相切.

由x^2-y^2=2得y^2=x^2-2>=0,∴x^2>=2,而您却认为x^2>=0,您错在这里.再问:能问个问题么:椭圆通径=2b²/a,里面a是指x²下面的数,还是焦点在哪个

=如图,已知△abc的三个顶点在以o为圆心的圆上,ad是△abc的高,ae是以o为圆心的圆上直径,求证ab×ac=ad×

连接BE∵AE为圆O直径∴∠ABE=90°∵AD为△ABC的高∴∠ADC=90°在△ABE与△ADC中,∠ABE=∠ADC,∠E=∠C(同弧所对的圆周角相等)∴△ABE∽△ADC∴AB/AD=AE/A

如图,P为函数y=4/3x图像上的一个动点,圆P的半径为3,设点P的坐标为(x,y) ⊙O是以坐标原点O为圆心,

解析,P为函数y=4x/3,设p(t,4t/3)圆O圆P相切,故|OP|=3+2=5√(t²+(4t/3)²)=5,t=3或-3.P点的坐标为(3,4)或(-3,-4).【其实可以

如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行(或重合)的直

∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OA平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0≤OP≤2,同理可得,当OP与x轴负半轴相交时,

圆与直线的关系如图所示,已知圆O是以数轴的原点O为圆心,半径为1的圆,角AOB=45度,点P在数轴上运动,若过点P且与O

这个……图呢……我自己画了一种情况——【-根号2,+根号2】就是B在x轴上……

如图中的圆是以O为圆心、半径是10厘米的圆,求阴影部分的面积.

三角形ABC的面积为:所以AC2÷2=AB×OC÷2=10×2×10÷2=100(平方厘米),由上面计算可得:AC2=100×2=200,所以阴影部分的面积是:3.14×10×10÷2-(14×3.1

如下页图是一个隧道横截面,它的形状是以点o为圆心的圆的一部分,如果M是⊙o中的弦CD的中点,EM经过圆心O交于点E,并且

设半径是r连接OC则OC=rOE=r所以OM=6-rM是CD中点所以OM垂直CD且CM=2所以由勾股定理r²=2²+(6-r)²r²=4+36-12r+r