如图,圆o是四边形ABCD的外接圆,AC是直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:45:54
如图,圆o是四边形ABCD的外接圆,AC是直径
如图,点O是四边形ABCD对角线AC的中点,E,F分别为AB,AD的中点,连接OE,OF得四边形AEOF与四边形ABCD

相似,因为OE//BC,OF//BC再问:怎么证出来的(还有对角线相等的两个矩形必相似吗再答:一共四个边,两个边重合,两个边平行,必相似对角线相等是什么意思,是长度相等?再问:是的对角线相等的两个矩形

已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ABCD是正方形

AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠

如图,四边形ABCD内接于圆o,BC是圆o的直径,AE垂直CD,垂足为E,DA平分角BDE.

你题没发完再问:再问:第2题再答:第一问可以求出90度第二问cd=ad圆里面两个都是直角三角行全等睡觉了拿手机在玩帮你看的没笔希望你弄得懂再问:恩,谢谢了

如图四边形abcd是平行四边形,圆o的半径r=3cm.求阴影部分面积.

S圆=3.14×3×3÷2=14.13平方厘米S空白=3×3÷2+3.14×3×3÷4=11.565平方厘米S平=6×3=18平方厘米S阴=(18-11.565)+(14.13-11.565)=9平方

如图,设O是四边形ABCD的对角线AC上的一点,OF‖CD,OE‖CB,四边形AEOF与四边形ABCD相似么?为什么?

很明显,两个四边形相似把四边形当成两个三角形看因为OF‖CD,OE‖CB∴三角形AOF≌三角形ACD三角形AOE≌三角形ACB∴四边形AEOF与四边形ABCD相似

如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,已知四边形ABCD的周长是48cm,而三角形COD的周

AD=10cm,AB=14cm∵△AOD的周长=AO+DO+AD△COD的周长=DO+CO+CD=DO+AO+CD由题意知AO+DO+AD+4=DO+AO+CD,AD+4=CD所以2(AD+CD)=4

如图,已知四边形ABCD中BC边上的一点O,画四边形ABCD关于点O对称图形

连AO延长至A'使A'O=AO连DO延长至D'使D'O=DO在OB(或延长线)上截C'O=CO在OC(或延长线)上截B'O=BO顺次连结A'B'C'D'即得与原四边形ABCD关于点O的对称四边形A'B

如图,设O是四边形ABCD的对角线AC上的一点,OF平行于CD,OE平行于BC,证明:四边形AEDF与四边形ABCD相似

AEDF打错.是AEOF !如图,∵OF‖CD,OE‖BC.∴⊿AEO∽⊿ABC ⊿AOF∽⊿ACDAE/AB=EO/BC(=AO/AC)=OF/CD=FA/DA.,又显然四对角对

5.如图,O是菱形ABCD的对角线的交点,DE//AC,CE//BD.求证:四边形OCED是菱形.

在菱形ABCD中OA=OB=OC=OD又DE//AC,CE//BD∴DE//OCCE//OD∴四边形OCED为平行四边形又OC=OD∴四边形OCED为菱形(一组邻边相等的平行四边形是菱形)

已知如图,四边形ABCD是矩形,对角线AC,BD相交于O,求证点ABCD在以O为圆心的圆上

证明:因为矩形ABCD中,OA=OB=OC=OD所以点A、B、C、D在以O为圆心的圆上再问:请问我还可以问你别的题吗?好的话都选你再答:当然可以再问:已知在○O中,A,B是线段CD与圆的两个交点,且A

如图 o为四边形abcd对角线的交点,过点o的直线ef分别交ad,bc于f,e两点.求证四边形aecf是平行四边形

证明:O为平行四边形ABCD对角线的交点,则OA=OC在平行四边形ABCD中,AD//BC,则∠OAF=∠OCE又∠AOF=∠COE(对顶角相等)∴△AOF≌△COE(ASA)则OE=OF,OA=OC

如图,四边形ABCD内接于圆O,并且AD是圆O的直径,C是弧BD的中点,AB和CD的延长线交圆O外一点E.求证:BC=E

连接AC,BD,AD是圆O的直径,所以∠ACD=∠ABD=90度,∠ACE=∠EBD=90度,C是弧BD的中点,圆周角∠CAD=∠CAB=∠CDB=∠CBD,∠ADC=∠ACD-∠CAD=90度-∠C

如图,圆O与四边形ABCD的四边形都相切,圆O的半径为R,四边形ABCD的周长为C,则求四边形ABCD的面积S

建立如图所示圆O为△ABC的内切圆 ∴OE⊥ABOF⊥BCOH⊥DCOI⊥AD∴S=△AOD+△AOB+△BOC+△COD     =&nb

如图,P是四边形ABCD所在平面外一点,O是AC与BD的交点,且PO⊥平面ABCD.当四边形ABCD满足下列条件____

连接PA、PB、PC、PD,作OE⊥AB于E,作OF⊥BC于F,连接PE、PF∵PO⊥平面ABCD∴△POE、△POF均为直角三角形若OE=OF,则根据边角边公理,可得△POE≌△POF则有PE=PF

如图,四边形ABCD是圆O的内接四边形,AB=AD,∠BCD=120°.求证AC=BC+CD

,△ABD为等边三角形所以,∠BCA=∠BDA=60°在AC上截取一段CE=BC那么,△BCE也是等边三角形则,∠CBE=60°而,∠ABD=60°所以,∠CBE-∠DBE=∠ABD-∠DBE即,∠C

如图,四边形ABCD是关于点O的中心对称图形,请你说明四边形ABCD一定是平行四边形.

连接AC、BD,∵四边形ABCD是关于点O的中心对称图形,则AC和BD都经过点O,且OA=OC,OB=OD,所以四边形ABCD为平行四边形.

如图:圆O为四边形ABCD的外接圆,圆心O在AB上,OC平行AB.

OA=OC∠OAC=∠OCAOC平行AB∠AOC+∠DAB=180°∠AOC+∠OAC+∠OCA=180°∠OCA=∠CAB∴AC平分∠DAB第二问还没出来-=容易求得AC平分∠DAB所以弧BC=弧C

如图,已知四边形ABCD内接于直径为3的圆O

AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/

如图,点O是平行四边形ABCD的对角线AC与BD的交点,四边形OCDE是平行四边形.

证明:连接AE,如图.∵四边形OCDE是平行四边形,∴DE∥OC,DE=OC∵O是平行四边形ABCD的对角线AC与BD的交点,∴AO=OC.∴DE∥OA,DE=OA∴四边形ODEA是平行四边形,∴OE