如图,圆O的半径为1,△ABC是圆O的内接等边三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:09:54
如图,圆O的半径为1,△ABC是圆O的内接等边三角形
如图,已知三角形的周长为18,内切圆o的半径为1,求△ABC的面积

如图:将O点与ABC三点连接.得OAB、OBC、OCA三个三角形.以三边为底边,高均为圆的半径1.三角形ABC的面积:S=BC*1/2+CA*1/2+AB*1/2=(BC+CA+AB)*1/2=18*

如图,△ABC中,∠ACB=90°,点O在AC上,以OA为半径的圆o恰好经过斜边AB的中点E,交AC于点D连接ce(1)

1)连OE,因为E是AB的中点所以CE是斜边的中线所以AE=EC所以∠A=∠ACE因为AO=OE所以∠A=∠AEO=30°所以∠EOC=∠A+∠AEO=60°在△OCE中,由内角和定理,得,∠OEC=

如图,圆O是Rt三角形ABC的内切圆,角C=90度,AD=2,圆O的半径为1,则三角形ABC的面积为

面积为6.AD=2,内切圆半径=1,所以三角形AOD中(AOD也是直角三角形),AD=2,OD=1,则AO=根号下5.设于是,sin

如图直角三角形ABC中 ∠B=30 ∠C=90 圆O是它的内切圆 半径为1 则这个直角三角形的面积是多少

内切圆半径=(AC+BC-AB)/2=1即:AC+BC-AB=2又:AB=2AC,BC=根号3AC故有:AC+根号3AC-2AC=2AC=2/(根号3-1)=根号3+1所以,BC=根号3*(根号3+1

直线与圆的位置关系已知,如图,在△ABC中,∠ABC=90°,O是AB上的一点,以O为圆心、OB为半径的圆与AB交于点E

切割弦定理得AD^2=AE*ABAB=4BE=3R=3/2tanA=R/AD=3/4BC=ABtanA=3勾股定理算出AC=5CD=3S△BCD=1/2*BC*DC*sinC=9/2*4/5=18/5

如图,ABC是圆O上三点,且角ACB=45度,圆O的半径长为1,求弦AC AB的

连结AO并延长与圆O相交于点D,连结BD,由圆的性质,AD为直径,AD=2,∠ABD=90º,又∠ADB与∠ACB同对着弦AB,∴∠ADB=∠ACB=45º,∴在直

如图,△ABC中,角ABC=90°,O为BC上一点,以O为圆心,OB为半径的圆O切AC于M,交BC于D,CD=2,OD=

(1)连OM∵∠ABC=90°且○O与AC相切于M∴AB=AM∵OD=3,CD=2∴BO=MO=3,OC=5在Rt△OMC中CM=根号(OC^2-OM^2)=根号(5^2-3^2)=4tan∠ACB=

28.等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=900,⊙O的半径为1,圆心O与直线AB的距离为5.

△与○的相切,共有4次:第一次,为○在右侧与AC相切;第二次为○在右侧与AB相切;第三次为○在左侧,与AC相切;第四次为○在左侧,与AB相切(排序依据后面的详细计算)当第一次相切时,如图1所示:OE⊥

如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=23.动点O在AC边上,以点O为圆心,OA长为半径的⊙O

(1)相切;证:OD=OA,所以角ODA=角A=30度;所以角COD=60度;因为D在中点,所以CD=AD;所以角OCD=角A=30度;所以角ODC=90度;所以OD垂直于CD,得证.(2)有正弦定理

不用建立坐标系的方法等腰直角三角形ABC和圆O如图放置,已知AB=BC=1,角ABC=90度,圆O的半径为1,圆心O与直

不做图笔述比较复杂.(1)、作图,平移三角形ABC与圆O的左侧在BC边相切,表示为三角形A‘B’C‘,其中B’C‘与圆O相切于点E,过O做B’C‘垂线,交B’C’延长线于D,连接OC‘,此时为三角形A

如图,已知⊙O是△ABC的外接圆,⊙O半径为8,sinB=3/4,则弦AC的长为?

延长AO交圆O于D,连结CD,则三角形ACD为直角三角形,根据同弧所对的圆周角相等可得∠D=∠B在直角三角形ACD中SinD=SinB=3/4=AC/AD而AD=2R=16所以可求AC=12

圆与三角函数如图,已知点O是Rt△ABC的直角边AC上一动点,以O为圆心,OA为半径的圆O交于AB于点D点,DB的垂直平

设OA=R,AD=2RcosA,AB=3AD=6RcosA;AC=1.5R又AC/AB=cosAAC、AB代进去,cosA=1/2,A=60°B=30°

如图 分别以△ABC的三个顶点为圆心,1为半径做圆

(1)三角形的内角和为180°所以各圆心角的和为180°阴影面积就是拼接成一起得到的扇形面积为π1²*180°/360°=π/2(2)四边形的内角和是360°所以各圆心角的和为360°阴影面

如图,在Rt△ABC中,∠ABC=90,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,且AD

设半径是x根据直角三角形ado列出勾股方程(x+1)^2=x^2+2^2解得x=1.5这样AB=4,AC=5,CD=CB=3

已知:如图,Rt△ABC,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E与AC切于D

连接OD则OD垂直ADOD=OE=ROA=1+ROD^2+AD^2=OA^2得:R^2+4=(1+R)^2R=3/2圆O的直径=2R=32.AB=AE+2R=4连结OC因为OD垂直AC则DC=AC-A

例3.在Rt△ABC中,∠ABC=90°,点O是BC边的中点,以O为圆心,OB为半径作⊙O.(1)如图1,⊙O与AC相交

解题思路:(1)连接OD、BD,根据圆周角定理得到∠BDC=90°,则E为Rt△ABD的斜边AB的中点,根据直角三角形斜边上的中线性质得到DE=BE=1/2AB,则∠EBD=∠EDB,由于∠EBD+∠

等腰直角三角形ABC和圆O如图放置,已知AB=BC=1,角ABC=90度,圆O的半径为1,圆心O与直线AB的距离为5.现

先说思路:三角形ABC追过去首先和他相切的肯定是AC然后有可能是AB或者是AC(与BC相切直接不管)最后肯定是AB...开始解题以直线BC为X轴BA为Y轴B为原点建立平面直角坐标系则时间t后:c坐标(

等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.

(1)假设第一次相切时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l.由切线长定理可知C′E=C′