如图,圆O的直径AB与弦CD相交于点E,若AE=5,BE=1,CD等于4倍根号
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:37:29
作OE⊥CD于E,连接OC∵AB=PA+PB=6+2=8∴半径OC=OB=4则OP=OB-PB=2∵OE⊥CD∴∠OEP=90°∵∠APC=30°∴OE=1/2OP=1∵∠OEC=90°∴CE=√(O
1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠
24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C
作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE
解题思路:圆解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?a
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
(1)证明:连接OC、OD,∵∠ADC=45°,∴弧AC的度数是90°,∵AB为直径,∴弧BC的度数也是90°,∴弧AC=弧BC,∵OC为半径,∴OC⊥AB,∴∠COE=90°,∴∠C+∠OEC=90
∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
⑴过OH⊥CD于H,则CH=DH,∵CE⊥CD,DF⊥CD,∴CE∥OH∥DF,∴OE/OF=CH/CH=1,又OA=OB,∴AE=BF.⑵不一定成立,因为E或F不一定在直径AB上,可能在其延长线上.
连接OB,作OP⊥AB于P.阴影部分的面积=12π•OB2-12π•OP2=12π(OB2-OP2)=12π•BP2=2π.再问:有图了,帮帮忙,谢谢!
连接OD,过点O作OM⊥CD∴M为CD的中点,∴DM=2√2,又DO=1/2AB=3,∴OM=1(勾股定理)RT△OME内,OE=AE-AO=2=2OM∴∠DEA=30°
过点O作,OE⊥CD,连接OC∵OE⊥CD,且CD=4倍根号3∴CE=DE=2倍根号3(垂经定理)∵AB=8∴OC=4∴OE=2(勾股定理)∵CE>OE∴CD为直径的圆与直线AB相交
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
这是一道关于圆的题目,下面开始证明证明:连结AE∴∠AEB=90º,∠PEB=∠EAB(弦切角定理)∵CD⊥AB,∴∠BFM=∠BAE=∠PEF∴PE=PF连接CE,ED∵∠PED=∠PCE
【∠APC=∠APD】证明:∵AB是⊙O的直径,弦CD⊥AB∴弧AC=弧AD(垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧)∴∠APC=∠APD(等弧对等角)再问:如图,AB是圆O的弦,以OA为
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
过原点作一直线OG交圆于G,交CD于F,反向延长线交圆于E,根据公式,有:(CD/2)^2=FG*(EG-FG)就是:(24/2)^2=FG*(30-FG)解得:FG=6,(舍去FG=24)OF=30