如图,圆o的直径AE=10

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:47:21
如图,圆o的直径AE=10
如图AB是圆O的直径,AE为弦,C为弧AE的中点,CD垂直AB于点D,交AE于点F,BC交AE于点G求证CF=GF

证明:连接AC,延长CD交圆O于M.CD垂直AB,则:弧AM=弧AC=弧CE,∠ACM=∠CAE;又AB为直径,∠ACB=90度.故:∠FCG=∠FGC(等角的余角相等)所以,CF=GF.

如图,AB为圆O的直径,AE⊥CE于点E,BC的延长线与AE的延长线相交于点F.若CE为圆O的切线,AF=BF,求∠A度

证明:令AE与圆O交于P;连接AC、CP.因为CE为切线,所以∠ECG=∠FAC.又因为AE⊥CE;,且AB为直径,所以AC⊥CF,所以△ACE∽△FCE,所以∠FCE=∠FAC,∠ECG=∠FCE.

已知:如图,△ABC内接于圆O,弦AD与BC垂直,AE是圆O的直径.求证:∠BAE=∠CAD

证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免

如图,已知△ABC内接于圆O,AE为直径,AD为BC上的高.求证:AB·AC=AE·AD

因为角aeb=角acb因为ae直径AD为BC上的高所以角aeb=角aec=角acb所以三角形abe和adc相似所以AB/AE=AD/AC得AB·AC=AE·AD

如图,AB是圆O的直径,弦AE⊥CD.求证弧BC=弧ED

证明:连接BD、AD∵AB为直径∴∠ADB为直角又∵AE⊥CD∴∠DAE=∠BDC∴弧BC=弧ED

如图,AB,CD是⊙O的直径,CE//AB交圆于E,连结AD\AE.求证AD=AE

连接EO∵AB||CE∴∠ECD=∠AOD∵弧EAD所对圆周角为∠ECD,所对圆心角为∠EOD∴∠ECD=1/2∠EOD∴∠EOA=∠AOD∴弧AD与弧AE相等∴AD=AE

如图,BC是圆O的直径,OA是圆O的半径弦BE=OA,求证:弧AC=弧AE

根据已知条件,不能证明;因为A在弧EC滑动时,不一定保证弧AC=弧AE;假如增加一条已知条件:AO平行与EB,(表示为AO//EB)连接OE,BE=OA=OE=OB,三角形EOB为等边三角形,∠EOB

如图,A,B,C为圆O上三点,CD为△ABC的高,AE为圆O的直径,求证:角CAD=角BAE

证明:连结CE.∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD+∠ACD=90°,∵AE为圆O的直径,∴∠ACE=∠ACD+∠BCE=90°,∴∠CAD=∠BCE,∵∠BAE=∠BCE,∴∠CA

如图,CD为圆O的直径,∠EOD=72°,AE交圆O于B,且AB=OC,求∠A的度数.

连接OB,因为AB=OC,圆的半径均相等,所以OB=OC=AB所以,∠A=∠BOC,设为x度.因为∠EOD=72°,所以∠EOC=108°由OB=OE得∠BEO=∠EBO设为y度.所以x+y+108=

如图,已知AE是圆O的直径,弦BC与AE相交于D.求证:tanB*tanC=AD/DE

证明:连BE,CE因为∠ABC=∠AEC所以tan∠ABC=tan∠AEC=AC/CE同理,tan∠ACB=tan∠AEB=AB/BE所以tan∠ABC*tan∠ACB=tan∠AEC*tan∠AEB

如图,AB是圆O的直径,AC是圆O的弦,以OA为直径的圆D与AC相交于点E,AC=10,求AE的长.

连接DE,因为AD=0.5AO,DE=AD=0.5AO=0.5OC(D,O都是圆心,圆半径相等.AD=DE,AO=CO)所以DE=0.5OC,AD=0.5AO因为角A是公共角所以三角形ADE与三角形A

如图AB,CD是圆O的两条直径,弦CE平行于AB,求证AD=AE

连接EO因为CE平行AB,CO=EO得角OCE=OEC=DOA=AOE因为EO=OD,角DOA=AOE,AO为公共边所以三角形DOA与EOA全等则AE=AD再问:没有了很完美撒~顺便问一句……你认识E

已知,在圆O中,直径AB⊥弦CD,E为垂足,AE=4,CE=6,求圆O的半径,如图

连接CO,设半径CO=R.则OE=OA-AE=R-4.OE^2+CE^2=CO^2,即(R-4)^2+36=R^2,R=6.5

如图,ab是圆o的直径,点c,d在圆o 上,点e在圆o外,角eac=角d=60度,求角abc的度数,ae是是圆o的切线,

ea是切线,ab是直径,所以角eab,acb都是90度,角abc是30度,bc=4由三角关系半径是4角aoc120度是圆周长的三分之一所以劣弧长为三分之八π

如图,AE是圆O的直径,AD是△ABC的高,求证:∠BAD=∠EAC

连结EC∴∠BAE=∠BCE∵AE是直径∴∠ACE=90°∴∠ACB+∠BCE=90°∵AD⊥BC∴∠DAC+∠ACB=90°∴∠BCE=∠DAC∴∠BAE=∠DAC∴∠BAE+∠EAD=∠DAC+∠

如图三角形ABC的三个顶点在⊙上,AE是圆O的直径,CD⊥AB于点D,证明AC*BC=AE*CD.

连接BC∠ACE=90°sinAEC=AC/AE∠AEC=∠ABCsinABC=CD/BC=sinAEC=AC/AECD/BC=AC/AEAC×BC=AE×CD

如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径,

(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/

如图AB是圆O的直径,AE为弦,C为弧AE的中点,CD垂直AB于点D,交AE于点F,BC交AE于点F,求证AF=CF.

 证明:连AC因为C是弧AE的中点所以弧AC=弧EC所以∠CAE=∠ABC因为AB是直径所以∠ACB=90,即∠ACD+∠BCD=90°因为CD⊥AB所以∠CDB=90°即∠ABC+∠BCD

如图,CD是圆O的直径,∠DOE=78°,AE交圆O于B,AB=OC,则∠A=______.

连接OB,∵AB=OC,OB=OC,∴OB=AB,∴∠EBO=2∠A,∴∠OEB=∠OBE=2∠A,∵∠DOE=78°,∴∠EOD=∠OEA+∠A=3∠A=78°,∴∠A=26°.故答案为:26°.