如图,圈心o为三角形abc的内切圆,ab等于9,bc等于8,ca等于10,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:22:10
如图,连接BO并延长交圆于点E,连接AE,则∠E=∠C=30°,∠EAB=90°;∴直径BE=ABsin30°=2,∵直径是圆内接正方形的对角线长,∴圆内接正方形的边长等于2∴⊙O的内接正方形的面积为
写反了吧AC+BC>OA+OB证明:延长BO交AC于D∵BC+CD>BD,AD+OD>OA∴BC+CD+AD+OD>BD+OA∴BC+AC+OD>OD+OB+OA∴AC+BC>OA+OB数学辅导团解答
延长BO交⊙O于点D,连接AD,∵BD是直径,∴∠BAD=90°,∵∠D=∠C=30°,AB=1,∴BD=2AB=2;如图2,MQ=2,∵四边形PQNM是正方形,∴∠NMQ=∠MQN=45°,∴MN=
分析:利用三角形面积相等来求解.在Rt△ABC中,∠C=90°,且BC=4,AC=3则由勾股定理可得:AB=5三角形面积SRt△ABC=S△AOB+S△AOC+S△BOC且S△AOB=1/2r*AB,
这和o无关啊……相似是必然的,中位线平行于底边,然后直接用平行或用AAA都可以证明相似~
取BC中点D,连结并延长OD至E,使DE=OD于是四边形BOCE是平行四边形所以向量OB=向量CE所以向量OB+向量OC=向量CE+向量OC=向量OE而由向量OA+向量OB+向量OC=0得向量OB+向
OED周长=10因为OE=BEOF=FC又因为BE+EF+FC=BC=10所以OE+EF+FC=BC=10(这道题是利用角平分线使被平分的两个角相等然后平行使角ABO与另一个角BOE相等又因为角ABO
关于如图,三角形ABC内接于圆O
解连接OD,OE,OF,BO,AO则OD垂直BC,OE垂直AB,OF垂直ACOD=OF=OE则四边形ODCF是正方形CD=CF由勾股定理AC=3,BC=4,AB=5在三角形BEO和三角形BDOOD=O
利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于
证明:延长AO交BC于D∵AC+CD>AD,BD+OD>OB∴AC+CD+BD+OD>AD+OB∵CD+BD=BC,AD=OA+OD∴AC+BC+OD>OA+OD+OB∴AC+BC>OA+OB数学辅导
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
因为PA是圆O的切线,A为切点,所以角PAC=弧ADC所对的圆周角=角ABC=60度,又因为PE=PA,所以三角形PAE是等边三角形.PA^2=PD*PB=1*(1+8)=9PA=PE=AE=3DE=
∵CD=CE,∴∠CDA=∠CEA∵弧AC=弧BC,∴∠CDA=∠CDB,∴∠CEA=∠CDB∵ADBC四点共圆,∴∠CAE=∠CBD∵AC=BC,∴△ACE=△BCD,∴AE=BD,∠ACE=∠BC
△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD
此题我做过.初三上册的图大概这样.A.IB.E.C.D是证明DB=CD吧?证明:∵AD平分∠BAC∴∠BAD=∠CAD∵∠BDC=∠CAD∠BAD=∠BCD(同圆种弧所对圆周角相等)∴∠BDC=∠BC
连结BE∵AE是直径∴∠ABE=90度=∠ADC又∵∠E=∠C∴三角形ABE与ADC相似∴AE:AC=AB:AD即AB乘以AC=AE乘以AD要给分哦
没图,答案初步计算应该是25π/9.
对于三角形而言,两边之和大于第三边.那么有:OA+OB>AB;(1)OA+OC>AC;(2)OB+OC>BC;(3)则(1)+(2)+(3),得2(OA+OB+OC)>AB+AC+BC即OA+OB+O