如图,在 正方形ABCD中,P是对角线上 一点,点E在AD的延长线上一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:05:59
如图,在 正方形ABCD中,P是对角线上 一点,点E在AD的延长线上一点
如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,

解析:∵在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD过P作PG⊥AD∴PG⊥底面ABCD∵PA=PD=(根号2/2)AD,E,F分别为PC,BD的中点∴PA=PD=

如图,在四棱柱P—ABCD,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,

在正方形ABCD中,连接AC、BD,相交与点G,连接EG∵点E是PC的中点,点G是AC的中点∴EG∥PA∵EG为平面EDB上的线∴PA//平面EDB∵侧棱PD⊥底面ABCD∴PD⊥CD,PD⊥BC∵P

如图,在四棱柱P-ABCD中,底面ABCD是正方形侧棱PD⊥底面ABCD,PD=DC,E是PC中点

因为pd垂直abcd,所以bc垂直pcd,所以bc垂直de因为e为pc中点且pd等于dc,所以de垂直pc所以de垂直pbc所以bde垂直pbc请采纳答案,支持我一下.

如图 在四棱锥P-ABCD中 底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=PC

证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.

(1)证明:连结AC、AC交BD于O,连结EO, ∵底面ABCD是正方形,∴点O是AC的中点,在△PAC中,EO是中位线, ∴PA∥EO,而平面EDB且平面EDB,所以,PA∥平面

如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点,求

(1)取PA中点E,连接EF、DE因PD=DC,而DC=AD(正方形)则PA⊥DE(三线合一) 因PD⊥平面ABCD则PD⊥AB(AB在平面ABCD上)又AD⊥AB(正方形)则AB⊥平面PA

如图,在正方形ABCD中,P是对角线AC上一点,PB⊥PE,求证:PB=PE

证明:△BPC和△DPC中:BC=DCPC公共∠BCP=∠DCP=45°所以:△BPC≌△DPC(边角边)所以:∠PBC=∠PDE………………(1)PB=PD…………………………(2)四边形BPEC中

如图,在四棱锥p -ABCD中底面 ABCD是正方形,侧面PAD 是正三角形,平面PAD垂直底面ABCD,求平面PAB垂

证明,过P做PM垂直AD于M,因为平面PAD垂直底面ABCD且AD为交线,所以PM垂直平面ABCD,即PM垂直AB.又ABCD是正方形,AB垂直AD,所以AB同时垂直平面PAD内相交的两条直线PM和A

正方形abcd在平面直角坐标系中得位置如图,在平面内找p

正方形ABCD在平面直角坐标系中的位置如图,在正方形内部找点P,使△PAB,△五个.(0,0),(t-1,0),(1-t,0)(0,1-t),(0,t-1再问:答案是9

如图,在正方形ABCD中,P为AD中点.求证:BP⊥AE.

设BP与AE的交点为O∵AB=BC,∠ABE=∠CBE=45°,BE=BE∴△ABE≌△CBE∴∠BAE=∠BCE∵P是AD中点易证:△ABP≌△DCP∴∠ABP=∠DCP∵∠BCE+∠DCP=90°

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图,已知,在正方形ABCD中,P.Q分别是BC.CD上的点,且∠PAQ=45度如图,已知,在正方形ABCD中,P、Q分

S三角形ADQ+S三角形ABP=S三角形APQ做AE等于AQ,延长CB到点E.因为正方形,所以AB=AD,∠D=∠ABP=90°,因为∠PAQ=45°,所以∠DAQ+∠BAP=45°在Rt△AEB与R

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.

十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P

如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点.求证:

证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.      

如图,在四棱锥P-ABCD中,PA=AB=AD=1,四边形ABCD是正方形,PA⊥平面ABCD,求四棱锥的表面积

ABCD面积为1PAB面积为0.5PAD面积为0.5PB=√2AC=√2PC=√3PBC是直角三角形同理PCD也是直角三角形面积为0.5√2四棱锥表面积为2+√2

如图,在正方形ABCD中.

(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点.

证明:(1)取AB中点E,连接EF,DE∵E,F分别是AB,PB的中点,∴EF∥AP,∴AP和DF所成的角即为EF和DF所成的角,即∠DFE或其补角;由已知四边形ABCD是正方形,假设PD=DC=a,