如图,在abc中,E为BC上的一点,EC=2BE,点D为AC 的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:25:01
∵DE⊥AC∴∠AED=∠ACB=90°∴ED∥CB又∵D为AB中点∴ED为△ABC的中位线∴AE=EC同理可证CF=FB又∵△CEF为RT△所以能构成我是数学老师,不会的可以问我
∵AD=AC,BE=BC.∴∠ACD=∠ADC,∠BCE=∠BEC,∴∠ACD+∠BCE=∠ADC+∠BEC=180°-∠ECD,另一方面∠ACD+∠BCE=∠ACB+∠ECD=90°+∠ECD,∴9
8cm,因为∠DEC=∠C那么,在边AC上做一点F使DF//BC,那么,角C等于角AFD等于角DEF,所以边DE等于边DF.又因为DF//BC,且,DF等于二分之一BC,所以,边BC等于8cm
分析:(1)根据题意,易证△GBD∽△CBE,得BD/BE=BG/BC,即BD•BC=BG•BE;(2)可通过证明ABG∽△EBA从而求得AG⊥BE;(3)EF:FD=1:10
(1)由于三角形内三角和为180°,所以∠BAC为60°,那么∠DAB=30°,∠ADC=65°.由于PE垂直AD的关系,∠E为25°.(2)猜想,∠E是∠B与∠ACB角度差的一半.证明,由题意,可以
∵AB=CB,∠ABE=∠CBF=90°,BE=BF∴⊿ABE≌⊿CBF∠BEA=∠BFC∵∠BEA=∠BCA+∠CAE=45°+30°=75°∴∠BFC=75°∠EFC=∠BFC-∠BFE=75°-
请给出问题好吗?垂直!且相等!ACB=90°,又是等腰三角形所以AC=BC,CE=CD,DCB=ECA=90°所以全等然后利用对应角相等就能推出垂直了还需要更相似的再说再补充:连接AD交BE于F因为F
(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,
设角DAE为x则ADE=(180-2x)ADC=(192-2x)=BAD+DBA=30+(180-30-x)/2得x=58再问:������ϸһ����
(1)如图所示;(2)∵AB∥EN,∴∠A+∠ANE=180°,∠B=∠NEC,∵∠ANE是△ECN的外角,∴∠ANE=∠NEC+∠C,∴∠A+∠B+∠C=180°.
如图,自点C作BA的平行线交DF于G.CG‖BD,则△BDF∽△CGF,得BF/CF=BD/CG.CG‖DA,则△ADE∽△CGE,得AE/EC=AD/CG,已知AD=BD,故AE/EC=BD/CG,
证明:∵∠DCB是△DCE的一个外角(外角定义)∴∠DCB>∠CDE(三角形的一个外角大于任何一个和它不相邻的内角)∵∠ADB是△BCD的一个外角(外角定义)∴∠ADB>∠DCB(三角形的一个外角大于
等底同高的三角形的面积相等,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,又△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等.故选A.再问:我只是在问有几对,你答4就
∵AD平分∠EDC(已知)∴∠ADE=∠ADC(角平分线定义)∴在△AED和△ADC中:∵DE=DC(已知)∠ADE=∠ADC(已证)AD=AD(公共边)∴△AED≌△ADC(SAS)∴∠C=∠E(全
延长FD到G,使得DG=DE.然后连接MG.那么因为∠ADE=∠CDF,∠ADG与∠CDF是对顶角.所以∠ADE=∠ADG.然后有他们的两个补角∠EDM=∠GDM,然后对于三角形EDM与三角形GDM由
△DEF与△ABC相似∵E、F分别为AB、AC上的中点∴EF‖BC∴△AEF∽△ABC设EF与AD交于O则AO=DO∵AD⊥BC∴AD⊥EF∴AE=DE,AF=DF∵EF=EF∴△AEF≌△DEF∴,
证明:∵AD:DC=1:2,∴AD:AC=1:3.作DG平行于AF交BC于G,则CDCA=GCCF,根据比例的性质知,ADAC=FGFC=13,又E是BD的中点,∴EF是△BGD的中位线,∴BF=FG
证明:延长CB至G,且使线段BG=AB;BG=AB=>△ABG为等腰△因∠ABC是△ABG的外角=>∠ABC=∠G+∠BAG=2∠G因BE是∠B的平分线=>∠EBC=∠G又因:AB+BD=DC则GB+
(1)证明:连接OE,∵BC与⊙O相切于点E,∴OE⊥BC,即∠OEB=90°.∴∠OEB=∠ACB=90°.∴OE∥AC.∴∠F=∠OED.∵OE=OD,∴∠ODE=∠OED.∴∠F=∠ODE=∠A
设BE为xEF为yDE为z因为S三角形ADE等于9S三角形BEF所以6z=9xy.1式又因为S三角形ADF等于S三角形ABF所以S三角形ADE-S三角形AEF等于S三角形ABF所以6z-6y=(6+x