如图,在RtABC中,∠C=90°,D为BC的中点,DE垂直DF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:03:46
首先平行四边形中∠A与∠C要么为对角,要么为同旁内角,题目中∠A+∠C=200°≠180°所以∠A与∠C为对角,所以∠A=∠C=100°∠B=80°
证明:∵∠A=∠BCD(均为角B的余角);∠AED=∠CDB=90度.∴⊿AED∽⊿CDB,CD/AE=BC/AD;-----------------------(1)同理相似可证:⊿ADC∽⊿DFB
你少打两个字吧?应该为是平行四边形吧因为四边形ABCD是平行四边形,平行四边形对角相等而且邻角互补所以∠A=∠C,∠B=∠D,∠A+∠B=180°又因为,∠A+∠C=200°得,∠A=∠C=200°/
证明:取ED的中点O,连接AO,∵∠CAD=90°,∴OD=AO=OE,∴∠AOE=2∠D,∵AD∥BC,∴∠EBC=∠D,∴∠AOE=2∠EBC,∵∠ABD=2∠EBC,∴∠ABD=∠AOB,∴AB
(1)作线段AB的垂直平分线,与AC的交点就是点P(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=
(1)tan角ABC=tan角ADC(2)2tan角ABC=tan角ADC(3)n角ABC=tan角ADC
∵Rt△ABC中,∠C=90°∴∠A+∠B=90°∵∠A-∠B=30°∴∠A=60°,∠B=30°根据特殊直角三角形的性质,得:b=(1/2)c,a=(√3)b∵b+c=24∴(1/2)c+c=24c
(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=∠ABP.∴∠A=∠ABP=∠PBC=13×
∵2S△abc=ab=(a+b+c)R∴R=ab/(a+b+c)∵∠C=90°∴a+b=c∴2ab=(a+b)-(a+b)=(a+b)-c=(a+b+c)(a+b-c)∴ab=(a+b+c)(a+b-
4:1过M点作AC的平行线,与BN交于一点记做Q∵MQ分别是BC和BN的中点∴MQ是△BNC的中位线∴QM:NC=1:2∵AN:NC=2:1在相似三角形△ANP和△QMP中AP:PM=AN:QM=4:
利用面积相等可以求得r.三角形面积一方面等于ab/2,另一方面等于1/2(ar+br+cr)从而有ab/2=1/2(a+b+c)r故r=ab/(a+b+c)
(1)四边形ABCD中∠A+∠C+∠ABC+∠ADC=360度有∠A=∠C,∠ABC=∠ADC∠C+∠ADC=180度所以DC‖AB(2)同道理可证明AD||BC所以四边形ABCD是平行四边行所以AB
1,画线段BC的中垂线PD,与AC的交点就是点P2.∵PD是BC的中垂线∴∠ADP=∠BDP=90°∵∠C=90°∴∠ADP=∠BDP=∠C∵PC=PDAP=PB∴RT⊿APD≌RT⊿BPD≌RT⊿B
是真命题.AB=2BC, ∠A=∠C-∠B=30°.∠C=90°所以三角形ABC是直角三角形.再问:�ش�̫�
没图再问:再答:P运动到AC中点时AP=BCPQ=AB∠A=∠C那么三角形,△ABC≌△QPAP运动到C点时即PC重合时AP=ACPQ=AB∠A=∠C那么三角形,△ABC≌△QPA再问:再详细点再答:
∵∠A-∠C=∠D-∠B∴∠A+∠B=∠D+∠C∵四边形的内角和为360°∴∠A+∠B=∠D+∠C=180°∴AD‖BC(同旁内角互补,两直线平行)应该合格吧?嘎嘎·······
(1)EF∥AC,理由如下:∵∠1+∠DFE=180°,且∠1+∠2=180°∴∠DFE=∠2即EF∥AC(2)∵EF∥AC∴∠3=∠ADE∵∠3=∠C∴∠ADE=∠C即DE∥BC∴∠AED=∠ABC
(1)作DP⊥BCAQ⊥BC∵AB=3根号2,∠A=90,∠ABC=45度∴等腰RT△ABC且BC=6∴AQ=3∵D是AB中点∴DP=1/2AQ=2/3S=1/2BE*DP=1/2t*3=3/2t∴S
联结BD,取其中点O,联结OA,OC,易证OA=OB=OC=OD.
用余弦定理证明勾股定理啥