如图,在RT△ABC=90°,AB=4,AC=2根号3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:36:33
∵∠C=90,∠ADC=60,AC=√3∴AD=AC/(√3/2)=√3/(√3/2)=2CD=AC/√3=√3/√3=1∵BD=2AD∴BD=4∴BC=BD+CD=4+1=5∴AB=√(BC
∠b=70度,BC=4sin20度=1.368,AC=4cos20度=3.758
AB'=AB=4B'C=AB'-AC=AB-ACAC=1/2AB=2B'C=4-2=2
(1)tan角ABC=tan角ADC(2)2tan角ABC=tan角ADC(3)n角ABC=tan角ADC
证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A
de=x,Δade与Δabc相似,ae/8=x/4,ae=2x,ce=8-2xy=x*(8-2x)=8x-2x^2(0
1、连接AD∵AB=AC,D是BC的中点∴AD是△ABC的中垂线∵∠A=90°∴∠B=∠C=45°∴∠DAC=45°=∠C∴CD=AD=BD2、∵AN=BM,AD=BD,∠NAD=∠B∴△AND≌BM
1.∵O为BC中点∴OC=OB∵△ABC为等腰直角三角形∴OA=(1/2)BC∴OA=OB=OC2.连接OA∵△ABC为等腰直角三角形,且O为BC中点∴∠COA=∠B=45°∵AN=BMOA=OB∴△
=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13
确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动
因为∠A=35°,所以∠B=90-35=55度.因为BC=B'C,所以∠CB'B=∠CBB'=55度,∠B'CB=180-55-55=70度.那么∠DCB=90-70=20度,∠ABC=55度.所以∠
(1)设:t秒钟移动了Tcm,cosA=3/5,cosB=4/5PC²=T²+3²-2*3*T*(3/5)=T²-18T/5+9PQ²=(5-T)&s
证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠
(1)DE为中位线→DE‖BF→∠AED=90°→DE为三角形ACD的高线——aE为中点→DE为三角形ACD的中线——b综合a,b→三角形ACD为等腰三角形,AD=CD→∠A=∠ACD∠CEF=∠A→
(1)cotb等于bc比ac等于4:3也就是说bc等于8(2)作PD‖BC设AP=BQ=x则QC=PC=8-x,有A字形相似得PD=4/5x,AD=3/5xCD=6-(3/5)x三角形PCD中用勾股定
应该时AC+BC=10吧AB^2=AC^2+BC^2=(AC+BC)^2-2AC*BC=100-2AC*BC因为AC+BC≥2√(AC*BC)所以AC*BC≤25,即AB^2≥100-50=50当AC
∵∠ACB=90°,AC=BC=1,∴AB=2,∴S扇形ABD=30•π(2)2360=π6.又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△
(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,
过B作BE⊥AD交AD的延长线于E在直角△ACD中CD=6∠ADC=45求出AC=6AD=6倍根号2在直角△ACB中由∠B的正弦=3/5得AC:AB=3/5得AB=10由勾股定理得BC=8∴BD=8-
(1)如图;(2)BD=DE;理由:过P作PF⊥BD于F,则四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,∠ADB=