如图,在rt△abc中, ab=10,bc=6,设折痕叫ac于点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:28:07
如图,在rt△abc中, ab=10,bc=6,设折痕叫ac于点
如图 在rt△abc中 ∠c 90,∠a=20°,AB=4,解直角三角形

∠b=70度,BC=4sin20度=1.368,AC=4cos20度=3.758

如图,在Rt△ABC中,EF是中位线,CD斜边AB上的中线,求证:EF=CD

证明:∵EF是中位线【已知】∴EF=½AB【三角形中位线等于底边的一半】∵CD斜边AB上的中线【已知】∴CD=½AB【直角三角形斜边中线等于斜边的一半】∴EF=CD【等量代换】

已知:如图在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC与AD相交于点E.

证明:在Rt△ABC和Rt△BAD中,AB=BAAC=BD,∴Rt△ABC≌Rt△BAD,∴∠BAD=∠ABC,∴AE=BE.

如图,在Rt△ABC中,CD是斜边AB的高,求证:∠BCD=∠A.

证明:在Rt△ABC中,∠A+∠B=90°(直角三角形两锐角互余),∵CD⊥AB,∴∠CDB=90°,∴∠BCD+∠B=90°(直角三角形两锐角互余),∴∠A=∠BCD(同角的余角相等).

如图,在Rt△ABC中,AB=AC,∠BAC=90°,D是BC的中点.

1、连接AD∵AB=AC,D是BC的中点∴AD是△ABC的中垂线∵∠A=90°∴∠B=∠C=45°∴∠DAC=45°=∠C∴CD=AD=BD2、∵AN=BM,AD=BD,∠NAD=∠B∴△AND≌BM

如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.

1.∵O为BC中点∴OC=OB∵△ABC为等腰直角三角形∴OA=(1/2)BC∴OA=OB=OC2.连接OA∵△ABC为等腰直角三角形,且O为BC中点∴∠COA=∠B=45°∵AN=BMOA=OB∴△

已知:如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E.

(1)证明:∵∠AEC与∠BED是对顶角,∴∠AEC=∠BED,在△ACE和△BDE中,∠AEC=∠BED∠C=∠D=90°AC=BD∴△ACE≌△BDE(AAS),(3分)∴AE=BE;(4分)(2

已知:如图,在Rt△ABC中,CD是斜边AB上的高.

(1)相等角A=BCDB=ACD三个直角相等(2)相似三角形ABCACDCBD三个三角形相互相似(对应边的关系已给出)原因:三个角对应相等再问:能不能原因再详细一点啊?好的给高分~!谢谢~!再答:楼下

如图,在Rt△ABC中,CD是斜边AB上的高

证明:角A+角ACD=角BCD+角ACD=90度,得角A=角BCD,在三角形CEF和BMF中,角ECF=BMF=90度,角CFE=BFM,得角E=角FBM,所以,三角形AED与CBM相似,得AE/BC

已知,如图,在Rt△ABC中,CD是斜边AB上的高,

证明:1、∵∠ACB=90∴∠CAB+∠B=90∵CD⊥AB∴∠CAB+∠CAD=90∴∠CAD=∠B∵AE平分∠CAB∴∠CAE=∠BAE∵∠CFE=∠CAD+∠CAE,∠CEF=∠B+∠BAE∴∠

已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,

设AD=X、CD=Y、BC=Z在Rt△ABC中,∠ACB=90°,CD⊥AB所以三角形ACD相似三角形CBD所以AD/CD=CD/BD所以CD平方=AD×BD即Y平方=9X(1)在三角形ACD和三角形

如图,在Rt△ABC中,∠ACB=90°,D,E是AB上的点

是不是求<DCE如果是:(注,<表示角)<BEC=<ECB=<DCE+<DCB,<CDA=<ACD=<DCE+<ACE,<CDA=<B+<DCB,<BEC=<A+<ACE,<B+<DCB=<DCE+<

如图,在Rt△ABC中,∠ACB=90度,AC=3,AB=5

∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.∴BC=4.以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R

如图,在Rt△ABC中,∠c=90°,已知AB+BC=10cm

应该时AC+BC=10吧AB^2=AC^2+BC^2=(AC+BC)^2-2AC*BC=100-2AC*BC因为AC+BC≥2√(AC*BC)所以AC*BC≤25,即AB^2≥100-50=50当AC

...如图 在Rt△abc中,角A=90度,AB=3cm,AC=4cm

令EF与AC交于点Q;DF与BC交于点M,与AC交于点N由转动得CP=BP=3,PF=CF=2,直角三角形CPQ中PQ:CP=3:4,所以PQ=1.5,FQ=0.5S=三角形PFM-FQN=CPQ-F

如图,在Rt△ABC中,∠ACB=90°,已知CD⊥AB,BC=1

(1)∵CD⊥AB,∴∠BDC=90°,∵∠DCB=30°,∴∠B=60°,在Rt△ACB中,∠ACB=90°,∴tan60°=ACBC=3,又BC=1,则AC=3;(2)在Rt△BDC中,tan∠B

如图,在Rt△ABC中,

(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,

如图,在Rt三角形ABC中,角ABC等于90度,CD垂直于AB,

相等,因为共圆弧对应角相等,即角DFE=角BCD,角BCD=角BAC.再问:是要求相似三角形吗再答:不需要。

如图,在Rt△ABC中,∠B=90°,BC>AB.

(1)如图;(2)BD=DE;理由:过P作PF⊥BD于F,则四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,∠ADB=