如图,在rt△abc中,∠cab=90°,角cba=50度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:41:29
证明:∵点D,E,F分别是AB,BC,CA边上的中点∴DF,DE是△ABC的中位线∴DF‖BC,DE‖AC∴四边形CEDF是平行四边形∵∠C=90°∴四边形CEDF是矩形
如图作DE垂直BC,交BC于F.并延长一倍到E.使DF=EF.连接CE,AE,BEBC是DE垂直平分线,CD=CE,BD=BECAB是等腰直角三角形∠ACB=45°∠DCF=45°-15°=30°;等
证明:∵AC=BC,∠ACE=∠BCD=90°,且AE=BD∴Rt△ACE≌Rt△BCD∴∠BDC=∠E∴∠E+∠CDF=∠BDC+∠CDF=180°又∠ACE=90°且四边形CDFE内角和为360°
∵Rt△ABC和Rt△ECD中,∠ACB=∠ECD=90°,CA=CB,CE=CD,EC+AC=32,∴DE+AB=2×32=6,∵∠ACB=∠ECD=90°,∠ACD=∠ACD,∴∠ACE=∠BCD
∵Rt△ABC和Rt△ECD中,∠ACB=∠ECD=90°,CA=CB,CE=CD,EC+AC=32,∴DE+AB=2×32=6,∵∠ACB=∠ECD=90°,∠ACD=∠ACD,∴∠ACE=∠BCD
∠C=90°CB=CA=a勾股定理AB=√(a²+a²)=√2a
由题意知⊿ABC和⊿CDE都是等腰直角三角形,∠ABC=∠AEC=45°,∴AEBC内接于圆.过C作直线EB的垂线,垂足为F.∵∠CBF=∠CAD,CB=CA,∴Rt⊿BCF≌Rt⊿ACD,得BF=A
(1)设:t秒钟移动了Tcm,cosA=3/5,cosB=4/5PC²=T²+3²-2*3*T*(3/5)=T²-18T/5+9PQ²=(5-T)&s
证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A
证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠
∵D、E、F分别是AB、BC、CA的中点∴EF=1/2AB又AB=2CD∴EF=CD=5cmAB=2CD=10cm∴AC=8cm∴CF=4cm
过B点作AC的平行线L1过D点作BC的平行线L2,交L1于点G,交AE于J过点E作AC的平行线L3,交L2于点H连接AG交L3于点I则AD=BC=GD,GH=BE=DC=HE那么角AIE=180°-角
(1)证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,,
因为∠C=90°,BC=9,CA=12,所以AB=15.连接OD,∠OBD=∠ODB因为BD平分∠ABC,所以∠OBD=∠DBF,所以∠ODB=∠DBF,所以OD//BF.因为△AOD相似于△ABC,
这不难(1)∵a,b是方程x^2-(m-1)x+m+4=0的两根∴a+b=m-1①a*b=m+4②∴AB2=52=a2+b2=(a+b)2-2ab=(m-1)2-2(m+4)解得m1=6m2=-2(∵
过C做CE垂直于AB于E三角形ABC的面积=1/2*AC*BC=30三角形ABC的面积=1/2*AB*CE由BC=12AC=5可以求出AB=13所以可以求出CE=60/13又因为CE垂直于AD,所以C
半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π
(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,
求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的