如图,在△ABC与△DEF中,AB=DE,BC=EF,AM.DN分别是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:05:19
如图,在△ABC与△DEF中,AB=DE,BC=EF,AM.DN分别是
已知;如图,在△ABC与△DEF中,AB=DE,BC=EF,AF=DC.求证;△ABC≌△DEF

证明:∵AF=DC,∴AF-CF=DC-CF,即AC=DF;在△ABC和△DEF中AC=DFAB=DEBC=EF∴△ABC≌△DEF(SSS).

已知如图,在△ABC和△DEF中,AB=DE,

证明:∵在△ABC和△DEF中,AB=DE,AC=DF,∠A=∠D(已知)∴△ABC≌△DEF(三角形全等定理.边角边)

如图,在△ABC和△DEF中,AB=DF,AC=DE,BE=CF,DE=DF,试说明AC与DF的关系

因为AC=DE,DE=DF所以AC=DF因为BE=CF,BE+EC=CF+EC,所以BC=EF因为AB=DF,DF=DE,所以AB=DE两个三角形三条边分别相等,所以两个三角形全等角ACB=角DFE所

如图,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中

如图②,恕我眼拙,点D在AB边上么?题目有问题啊还有,BF=CD,且BF⊥CD∵ABC等腰直角△,+O为AB中点∴BO=CO=AO,角BOF=角COD同理:FO=OD=OE∴△BOF≌△COD∴BF=

如图,在△ABC中,DE//BC.(1)若D是AB的中点,求△DEF与△ABC的周长比 (2)若DE把三角形面积平分求A

(1)DE平行于BC.则三角形ADE∽ABC所以△ADE与△ABC的周长比=相似比=1:2(2)若DE把三角形面积平分即△ADE与△ABC的面积比=1:2DE平行于BC.则三角形ADE∽ABC所以△A

如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.判断△ABC与△DEF是否相似,并

△ABC∽△DEF.由图可得:AB=2,BC=22,AC=25;DE=2,EF=2,DF=10,∴ABDE=BCEF=ACDF=2,∴△ABC∽△DEF.

如图,在△ABC中,AB=AC,BD=CE,∠B=∠DEF.求证:△DEF是等腰三角形.

证明:∵∠DEC=∠B+∠BDE=∠CEF+∠DEF,∠DEF=∠B,∴∠CEF=∠BDE.∵AB=AC,∴∠C=∠B.又∵CE=BD,∴△BDE≌△CEF.∴DE=FE.所以△DEF是等腰三角形.

如图,在三角形ABC中已知AB=AC=5,BC=6,切三角形ABC全等于三角形DEF,将三角形DEF与

抱歉!原题不完整,无法直接解答.请审核原题,追问时补充完整,

如图,在△ABC中,AB=AC,BD=CE,∠B=∠DEF,求证△DEF为等腰三角形

因为∠DEC=∠B+∠BDE(三角形的一个外角等于其它两个内角之和)又因为∠DEC=∠DEF+∠FEC所以∠B+∠BDE=∠DEF+∠FEC所以∠BDE=∠FEC(∠DEF=∠B)所以△DBE与△EC

已知:如图,在△ABC与△DEF中,AB=DE,BC=EF,AF=DC.

证明:∵AF=DC,∴AF-CF=DC-CF,∴AC=DF,在△ABC与△DEF中AB=DEAC=DFBC=EF,∴△ABC≌△DEF(SSS).

如图,已知在三角形ABC中AD=BE=CF,且△DEF是等边三角形,求证:△ABC是等边三角形

证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A

如图,在△abc与△def中,如果ab=de,ac=df,be=cf,求证△abc全等于△bef

∵BE=CF∴BE+EC=FC+CE∴BC=EF在△ABC与△DEF中AB=DEAC=DFBC=EF∴△ABC与全等于△DEF

如图,已知△ABC∽△DEF,△ABC与△DEF的相似比是3:2,点G,H分别在BC,EF上,且BG:GC=EH:HF,

3:2百分之百的除了面积比是6::4其他的比全是3:2因为△ABC∽△DEF△ABC与△DEF的相似比是3:2且BG:GC=EH:HF而GC=BC-GCHF=EF-HE所以GC:HF=3:2因为AC:

有一块直角三角尺DEF,放在△ABC上,如图,△DEF的两条直角边DE、DF分别经过B、C两点,在△ABC中,∠A=50

(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠D=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=130°-90°=40°.故∠ABD+∠ACD为40°;(2)如图所示.∵∠A

如图,在三角形ABC与三角形DEF中,∠A=∠D,AB/DE=AC/DF,求证:三角形ABC相似于三角形DEF

两边对应成比例,夹角相等,已经相似了.再问:按其他证明方法证明再答:还有一种方法就是把△DEF搬到△ABC上进行证明了,∵∠A=∠D,把△DEF搬到△ABC上,使A与∠D重合,且DE放在AB上,自然D

如图,在△ABC中,AD为BC边上的高,E、F分别为AB、AC上的中点,△DEF与△ABC相似吗

△DEF与△ABC相似∵E、F分别为AB、AC上的中点∴EF‖BC∴△AEF∽△ABC设EF与AD交于O则AO=DO∵AD⊥BC∴AD⊥EF∴AE=DE,AF=DF∵EF=EF∴△AEF≌△DEF∴,

如图,已知△ABC∽△DEF,求△ABC与△DEF的相似比k的值

∵△ABC∽△DEF∴(a+b)/c=(b+c)/a=(a+c)/b=k∴a+b=ck,b+c=ak,a+c=bk相加得a+b+b+c+a+c=ck+ak+bk即2(a+b+c)-(a+b+c)k=0

如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.证明:△ABC∽△DEF

直接计算对应的边的比值AB/DE=√2AC/DF=√2BC/FE=√2三边对应比值相等所以:△ABC∽△DEF

如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中

(1)∵△ABC为等腰直角三角形∴AB=AC∠B=∠C∵AP=AQ∴AP-AB=AC-AQ即BA=CQ∵E为BC中点∴BA=CE∴在△BPE和△CQE中∵BP=CQ∠B=∠CBE=CE∴△BPE=△C