如图,在△abc中,内切圆I和边BCCAAB分别切与点DEF.求内切圆的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:09:24
分别连接OE,OF.,则OE⊥AE,OF⊥AF,圆心角∠FOE=2∠FDE=140°.在四边形AEOF中,可以得到:∠A与∠FOE互补,则:∠A=40°
过点C作CD⊥AB于D∠B=45,∠BDC=90所以根据勾股定理CD²+BD²=BC²BD=CD所以CD=BD=√2∠A=180-∠B-∠C=30在Rt△ADC中,AC=
连结IE, ID, IFE,D,F为切点&nbs
∴△ABC的周长=AB+BC+AC=AB+(BD+CD)+(AE+CE)=AB+(BF+CE)+(AF+CE)=AB+(BF+AF)+2CE=AB+AB+2CE=10+10+2=22再问:∴△ABC的
1、连圆心与各顶点,分割成3个三角形,再连各切点.可由面积和得到.2、注意:每条边分2段.AD=AF等等,所以AB+AC=2AD+BD+FC又BD+FC=BC,所以AD=(AB+AC-BC)/23、由
连接OD,半径r=OE=OF=EC=FCFC=AC-AF=b-AFAF=AD=AB-BD=c-BDBD=BE=BC-EC=a-r所以r=b-(c-(a-r))=b-c+a-r从而2r=a+b-c,r=
=1/2(BC+AC-AB)用的是切线的性质再问:好吧..没有过程吗?
确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动
连接IE、IF,则:∠AEI=∠AFI=90度,且IE=IF1、当AB=6,AC=8,BC=10时,显然△ABC是直角三角形.所以:AEIF为正方形.圆I内切于△ABC,所以:AE=AF,BD=BF,
(1)根据三角形的内切圆定律,IC平分∠ACB,IB平分∠ABC,∵∠ACB=90°,∴∠ICB45°,∴180°-45°-105°=30=1/2∠ABC=∠IBA,180°-90°-60°=30°=
解连接AO,BO,CO我们可以得到几组全等三角形AOF全等AOEBOF全等BODCOD全等COE所以AF=AEBF=BDOE=DC=OD=EC=1AF+BF=AB=10AE+EC+BD+DC=10+1
过B作BM⊥AC可得AM=3BM=3√3在△BCM中用勾股定理BC=2√13内切圆圆I的半径为r1/2r(AB+BC+AC)=1/2×8×3√3r=(7√3-√39)/3外接圆
连接IE、IF,则:∠AEI=∠AFI=90度,且IE=IF1、当AB=6,AC=8,BC=10时,显然△ABC是直角三角形.所以:AEIF为正方形.圆I内切于△ABC,所以:AE=AF,BD=BF,
应该是40度.分别连接FI,IE,EF.角fda是70度,那么角ifd和角ied之和为70度,那么角ife和角ief之和为180-70-70=40.那么角fie为180-40=140度.所以叫A为36
证明:连接IE,IF∵AB,AC与圆I相切∴∠AFI=∠AEI=90º∴∠A+∠EIF=180º∴∠EIF=180º-∠A∴∠FDE=½∠EIF=90º
如图 作IM⊥AB于M,IN⊥BC于N,IP⊥AC于P,连接AI BI CI∵点I是△ABC的内心∴∠IAM=∠IAP∴IM=IP同理IM=IN∴
证明:∵内切圆I和边BC、CA、AB分别相切于点D、E、F∴BF=BD【从圆外一点引圆的两条切线长相等】∴∠BDF=∠BFD=(180º-∠B)÷2=90º-½∠B∵CD
角形ABC是等腰三角形,底边上的高h=√100-36=8三角形ABC的面积为48设三角形的内切圆的半径为x那么内切圆圆心到三角形ABC三边的距离都是x于是,1/2AB*x+1/2AC*x+1/2BC*
过B作BM⊥AC可得AM=3BM=3√3在△BCM中用勾股定理BC=2√13内切圆圆I的半径为r1/2r(AB+BC+AC)=1/2×8×3√3r=(7√3-√39)/3外接圆圆O的半径过O点作AB,
(1)∵圆I是△ABC的内切圆,∴∠IBC=12∠ABC,∠ICB=12∠ACB,∴∠IBC+∠ICB=12(∠ABC+∠ACB),∵∠ABC+∠ACB=180°-∠A=140°,∴∠IBC+∠ICB