如图,在△ABC中,点C在OA上,点E,D在OB上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:44:19
如图,在△ABC中,点C在OA上,点E,D在OB上
如图,在△ABC中,∠B=30°,∠C=90°,AC=6,O是AB边上的一动点,以O为圆心,OA为半径画圆.

(1)在Rt△ABC中,∵∠B=30°,∠C=90°,AC=6,∴AB=12(1分)若⊙O与BC相切于点D,连接OD则OD⊥BC,∴∠ODB=∠C=90°又∵∠B=∠B,∴△OBD∽△ABC∴ODAC

如图,在△ABC中,c=90度,AD是∠BAC的角平分线,O是AB上一点,以OA为半径的⊙O经过点D,交AC于点E&nb

1,.连接od,因为角oad=二分之一的弧df,所以角dof=弧df,因为2角oad=角oda,所以oa=ob,所以bc是圆o的切线 2,连接ed,因为角dae=角oad,ad=ad,角od

已知:如图,在平面坐标系中,点A,B,C分别在坐标系上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方

已知:如图,在平面坐标系中,点A,B,C分别在坐标系上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位一秒的速度向下运动,连接PA,PB,D(-m,-m)为AC上的点(m

如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.若

(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴ODAC=OBAB,即10r=6(10-r).解得r=154.故答案是:154

如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.

(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴ODAC=OBAB,即10r=6(10-r).解得r=154,∴⊙O的半径为1

(2011•盐城)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、

(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴ODAC=OBAB,即10r=6(10-r).解得r=154,∴⊙O的半径为1

如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.

小题1:连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴=,即=. 解得r=,   &nbs

如图,点A在双曲线Y=6/X上,过A点做AC⊥X轴,垂足为点C,OA的垂直平分线交OC于点B,当OA=4时,△ABC周长

因为OA的垂直平分线交OC于点B所以AB=OB设OC=x,则AC=6/x则:x的平方+(6/x)的平方=16解得:x=3倍根号2所以OC=3倍根号2,AC=根号2所以△ABC周长=AB+BC+AC=O

如图,在三角形ABC中,OA、OB、OC分别平分角A、角B、角C相交于点O

∠1+∠2+∠3=1/2∠ABC+1/2∠ACB+1/2∠BAC=1/2*180°=90° 2)∠BOC=180°- ( 1/2∠ABC+1/2∠ACB)=180°-&n

1.如图,已知RT△ABC中,∠C=90°,点o在AB上,以O为圆心,OA为半径的圆与AC,AB分别交于D,E且∠CBD

第一个相切很好证明,用角度的转化,最后和为90度.第二题:连接DE,所以AD:DE=8:10,因为∠CBD=∠A,则他们的余弦值也相等,所以BD=2.5

(2014•犍为县一模)如图在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB,分别

(1)直线BD与⊙O相切.(1分)证明:如图,连接OD.∵OA=OD∴∠A=∠ADO∵∠C=90°,∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=90°∴直线B

(2013•新余模拟)如图,在Rt△ABC中,∠C为直角,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交

(1)设⊙O的半径为r,连接OD,∵BC切⊙O于点D,∴OD⊥BC,即∠ODB=90°,∵∠C=90°,∴∠C=∠ODB,∵∠B=∠B,∴△OBD∽△ABC,…(2分)又∵AC=8,AB=12,∴OD

(2011•房山区二模)已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,A

(1)直线BD与⊙O相切.证明:如图1,连接OD.∵OA=OD,∴∠A=∠ADO.∵∠C=90°,∴∠CBD+∠CDB=90°.又∵∠CBD=∠A,∴∠ADO+∠CDB=90°.∴∠ODB=90°.∴

(2008•北京)已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别

(1)直线BD与⊙O相切.证明:如图,连接OD.∵OA=OD∴∠A=∠ADO∵∠C=90°,∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=90°∴直线BD与⊙O

如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.

证明:如图,连接OD.设AB与⊙O交于点E.∵AD是∠BAC的平分线,∴∠BAC=2∠BAD,又∵∠EOD=2∠EAD,∴∠EOD=∠BAC,∴OD∥AC.∵∠ACB=90°,∴∠BDO=90°,即O

如图,在Rt三角形abc中,角c等于90度,点o在ab上,以o为圆心,oa长为半径的园与ac,ab分别交于d.e,且角c

连接OD、DE有AD⊥DEDE‖BC且有角OAD=ODA已知角OAD=CBD则有OAD=ODA=CBD=EDB而角ODE=OED且OAD+OED=90度因此有ODE+EDB=90度OD垂直BDBD为圆

已知,如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心.OA长为半径的圆与AC,AB分别交于点D,E,且∠

AD:AE=8:10连接deade相似于abc折AC:AB=8:10分别设为8x10x勾股定理后面就简单啦88

如图,在边长为1的等边△ABC中,中线AD与中线BE相交于点O,则OA长度为______.

∵△ABC是等边三角形,AD、BE为中线;∴BD=AE=12,∠ABE=∠BAD=30°,∠AEB=∠ADB=90°;∴AD=BE=AB•sin60°=32;在Rt△BOD中,BD=12,∠DBO=3