如图,在△abc中,点def分别再bc,abac上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:08:09
如图,在△abc中,点def分别再bc,abac上
如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于E,DF⊥AC于点F,求△DEF

证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.∵D是BC的中点,∴BD=CD.在△BDE与△CDF中,∵∠DEB=∠DFC  ∠B=∠C

如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,且AF=BD=CE,求证:△DEF是等边三角形

证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形

已知;如图,在△ABC与△DEF中,AB=DE,BC=EF,AF=DC.求证;△ABC≌△DEF

证明:∵AF=DC,∴AF-CF=DC-CF,即AC=DF;在△ABC和△DEF中AC=DFAB=DEBC=EF∴△ABC≌△DEF(SSS).

已知如图,在△ABC和△DEF中,AB=DE,

证明:∵在△ABC和△DEF中,AB=DE,AC=DF,∠A=∠D(已知)∴△ABC≌△DEF(三角形全等定理.边角边)

如图,在△ABC中,点D,E,F分别是各边的中点,已知△BAC的面积为80,求△DEF的面积.

∵点D,E,F分别是各边的中点∴四个小三角形全等∴SΔDEF=SΔABC/4=80/4=20再问:能不能再详细点啊再答:∵D、E分别是AB、AC的中点∴DE∥BC且DE=BC/2∴ΔADE∽ΔABC且

如图,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中

如图②,恕我眼拙,点D在AB边上么?题目有问题啊还有,BF=CD,且BF⊥CD∵ABC等腰直角△,+O为AB中点∴BO=CO=AO,角BOF=角COD同理:FO=OD=OE∴△BOF≌△COD∴BF=

如图 在等边三角形ABC中,点D,E,F分别在AB,BC,CA上,AD=BE=CF,△DEF为等边三角形

1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)

如图,在△ABC中,AB=AC,BD=CE,∠B=∠DEF.求证:△DEF是等腰三角形.

证明:∵∠DEC=∠B+∠BDE=∠CEF+∠DEF,∠DEF=∠B,∴∠CEF=∠BDE.∵AB=AC,∴∠C=∠B.又∵CE=BD,∴△BDE≌△CEF.∴DE=FE.所以△DEF是等腰三角形.

如图,在△ABC中,AB=AC,BD=CE,∠B=∠DEF,求证△DEF为等腰三角形

因为∠DEC=∠B+∠BDE(三角形的一个外角等于其它两个内角之和)又因为∠DEC=∠DEF+∠FEC所以∠B+∠BDE=∠DEF+∠FEC所以∠BDE=∠FEC(∠DEF=∠B)所以△DBE与△EC

如图,在RT△ABC中,∠ACB=90°,∠B=30°,BC=4,△DEF为等边三角形,点E、F在BC边上当点F与点C重

根据题目叙述,应将附图中的E和F调换位置,如图.(1)、你已解出DE=EF=FD=2..(2)、有.就是CF=DG.∵∠DEF=60°,∠B=30°,∴∠EGB=30°,GE=EB;①∵BC=4,EF

2道初二数学题(1)如图,△ABC、△DEF都是等边三角形,点D、E分

要是相似,必须有60度的角.那就只有三个黄色的三角形了.但是根据小写字母a,b,c等等,长度也看不出有等量关系或者比例关系.后头那个大题目最好自己完成.不太费事.网友们估计也该喝杯水啦.再问:第二题题

如图,在△ABC中,AB=AC.D,E,F分别为AB,BC,CA上的点,且BD=CE,∠DEF=∠B.求证:△DEF是等

AB=AC∠C=∠B……①∠DEC是外角,∠DEC=∠B+∠BDE因为∠DEF=∠B所以∠FEC=∠BDE……②又因BD=CE……③△BDE≌△CEF所以DE=EF

如图,在△ABC中,EF平行BC,且EC平分∠DEF.若AD⊥EC,垂足为点G,求证:AE=AC

∵EC平分∠DEFEF∥BC∴∠DCG=∠FEG=∠DEG又AD⊥EC∴DE=DC∠ADE=∠ADC又AD公共∴△AED≌△ACDAE=AC

如图 在等边三角形ABC中,点D,E,F分别在AB,BC,CA上,AD=BE=CF,说明△DEF为等边三角

∵在等边△ABC中∴∠A=∠B=∠C=60°AB=BC=AC∵AD=BE=CF∴AB-AD=BC-BE=AC-CF即BD=CE=AF∵∠A=∠B=∠C=60°AD=BE=CFBD=CE=AF∴△ADF

已知在下图中,将一副三角形(RT△ABC和△DEF)如图①摆放点E,A,D,B在一条直线上且D

∵∠A=∠ADM=30°,∴MA=MD.又MG⊥AD于点G,中的结论成立.如图9,在Rt△AMG中,∠A=30三角形DGM和NHD相似所以DH=(根号3)MGAG=(

如图,已知△ABC中,∠C=90°,∠A=30°,等边△DEF的一边EF在直角边AC上移动,当点E与点C重合时,点D恰好

因为等边△DEF,所以EF=ED=DF,当点E与点C重合时,∠DEF=∠DCF=60°,又因为∠A=30°所以当点E与点C重合,点D恰好落在AB边上即∠CDA=90°,因为直角三角形中,30°角所对边

如图,△ABC为等边三角形,点DEF分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF

∠DFC=∠A+∠ADF(三角形一个角的外角等于另外两个角之和)∠DFC=∠DFE+∠EFC∵∠A=∠DFE=60∴=∠ADF=∠EFCDF=EF∠A=∠C所以△ADF≌△CFEAD=CF同理BE=C