如图,在△abc中,角B等于60

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:19:12
如图,在△abc中,角B等于60
如图,在三角形ABC中,CD是三角形ABC的角平分线,∠A等于2角B,求证BC等于AC+AD

证明:在BC上截取CE=CA,连接DE,由SAS可判定△ACD≌△ECD,AD=ED∴∠CED=∠A∴∠CED=2∠B∵∠CED=∠B+∠BDE∴2∠B=∠B+∠BDE,∠B=∠BDE∴EB=ED=A

如图 在rt三角形abc中 角acb等于90度 a=5 c=13 求b

∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/

如图RT三角形ABC中,角Acb等于90度,角B等于30度

(1)bc=cd/sin30=4*2=8ac=cd/cos30=三分之8根三ac*bc=ab*cd*0.5===>cd=三分之32根三(2)ac=ab*sin30=0.5*12=6角acd=角b=30

如图 在三角形abc中 角b等于角c 角bad等于40度 且角ade等于角aed 求角cde

再问:👍再问:40+x不是应该等于o+再问:z再答:?再答:哦对写错了再答:最后那个减号应该是加号再问:哦再问:请问方程怎么解本人初一没学三元再答:消元再答:再答:以此类推再问:哦再答

如图已知在梯形abc d中ae b平行bc角b等于90度a b等于3 bc等于11 dc等于6.请

做了吗?再问:?再答:设BP=x则cp=11-x分两种情况:(1)x:(11-x)=3:6∴X=11/3(2)x:6=3:(11-x)解得:x=2或x=9综上:BP=11/3或2或9再问:再问:不好意

如图 在直角三角形abc中 角acb等于90度,角b等

应该是顺时针转如图,ABC为30-60-90度直角三角形,AB=2BC=8,AO=2根号(3)1.当<AOD=30度时,AOD为等腰三角形,<BDE=2<A=60=<B,所以B

如图2,在三角形ABC中,BC等于a,AC等于b,角BCA等阿尔法,根据所给的条件,求三角形ABC的面积.

最简单的解法就是用这个公式三角形面积S=1/2absinC∴S△ABC=1/2absinα

如图,已知,在三角形abc中,角abc等于90度,角b等于30度,cd平分角acb,bd等于6,求bc,cd,ac,&n

做dh垂直于bc,再用勾股定理就都出来了再问:详细点好么再答:再问:打字好么,图模糊

如图,在三角形ABC中,角b等于角c

证明:过A作AD垂直BC于D,在三角形ABD与三角形ACD中,角B=角C,角ADB=角ADC=90度,AD=AD,所以三角形ABD全等于三角形ACD所以AB=AC

如图在rt三角形abc中角acb等于90度,AC等于bc等于6cm

以AC为X轴,以A为原点建立直角坐标系,则A(0,0)、B(6,6)、C(6,0),直线AB的解析式为y=x,设P点坐标为(x,x),过P点作PD垂直BC于D,作PE垂直AC于E,依题意AP=√2t,

如图,在三角形abc中,角b等于76度,角c等于36度,

利用三角形的内角和可以求出:∠BAC=180°-∠B-∠C=180°-76°-36°=68°希望我的回答能帮助你,在我回答的右上角点击【采纳答案】,

如图,在三角形abc中角A等于角B,角1等于角2,角BAD等于40度,求角EAD的度数

解法1:    ∵ ∠B=∠C    ∠BAD=∠ADC-∠B    

如图,在三角形ABC中,已知角α等于角B,AC等于6,BD等于5,求AB

角α等于角B角A=角A则三角形CAD相似于三角形BAC则有CA:AB=AD:ACAC*AC=AB*AD=AB*(AB-BD)AB*AB-AB*BD=AC*ACAB^2-5AB-36=0(AB-9)(A

如图在三角形abc中角b等于60度角c等于30度……

十五度再问:过程(^ω^)再答:一个三十度一个六十度所以另一个是直角,又因为角平分线线,所以,直角被分成两个四十五度,对吧再答:因为ad是高再答:所以bad就等于180减90减60等于30再答:所以d

如图,在Rt三角形ABC中,角B等于90°,BC大于AB.

BD=DE;理由:过P作PF⊥BD于F,四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,{∠ADB=∠BFPAB=BP

如图,在三角形ABC中,角B等于两个角C,AD是高.求证:CD=AB+BD

证明:在DC取点E,使得BD=DE,连接AE∵AD⊥BC,BD=DE∴AB=AE∴∠B=∠AEB∵∠AEB=∠C+∠EAC,∠B=2∠C∴∠EAC=∠C∴AE=EC∴AB+BD=EC+DE=CD∴AB